Conventional data center interconnects rely on power-hungry arrays of discrete wavelength laser sources. However, growing bandwidth demand severely challenges ensuring the power and spectral efficiency toward which data center interconnects tend to strive. Kerr frequency combs based on silica microresonators can replace multiple laser arrays, easing the pressure on data center interconnect infrastructure.
View Article and Find Full Text PDFFiber Bragg grating (FBG) optical sensors are state-of-the-art technology that can be integrated into the road structure, providing real-time traffic-induced strain readings and ensuring the monitoring of the road's structural health. By implementing specific FBG sensors, it is possible to detect each vehicle's axle count and the induced strain changes in the road structure. In this study, FBG sensors are embedded at the top of the 240-mm-thick cement-treated reclaimed asphalt pavement mixture layer of the road (specifically, 25 mm deep within the road).
View Article and Find Full Text PDFThe fabrication of microsphere resonators and the generation of optical frequency combs (OFC) have achieved a significant breakthrough in the past decade. Despite these advances, no studies have reported the experimental implementation and demonstration of silica microsphere OFCs for data transmission. In this work, to the best of our knowledge, we experimentally for the first time present a designed silica microsphere whispering-gallery-mode microresonator (WGMR) OFC as a C-band light source where 400 GHz spaced carriers provide data transmission of up to 10 Gbps NRZ-OOK modulated signals over the standard ITU-T G.
View Article and Find Full Text PDF