Publications by authors named "Jurgen Winkler"

Article Synopsis
  • The study aimed to create a shorter version of the Progressive Supranuclear Palsy quality of life scale (PSP-QoL) to make it easier for patients, especially those with cognitive impairments, to complete.
  • Involved a retrospective analysis of data from 245 PSP patients in Germany, resulting in a condensed 12-item scale that covers mental and physical aspects of daily living.
  • The new scale, called the PSP-ShoQoL, showed strong correlations with existing measures of quality of life and demonstrated its sensitivity to changes over time.
View Article and Find Full Text PDF

Introduction: Amyotrophic lateral sclerosis (ALS) is an inevitably fatal condition that leads to a progressive loss of physical functioning, which results in a high psychosocial burden and organizational challenges related to medical care. Multidimensional and multiprofessional care is advised to meet the complex needs of patients and their families. Many healthcare systems, including Germany, may not be able to meet these needs because non-medical services such as psychological support or social counselling are not regularly included in the care of patients with ALS (pwALS).

View Article and Find Full Text PDF

Background And Purpose: Hereditary spastic paraplegias (HSPs) comprise a group of inherited neurodegenerative disorders characterized by progressive spasticity and weakness. Botulinum toxin has been approved for lower limb spasticity following stroke and cerebral palsy, but its effects in HSPs remain underexplored. We aimed to characterize the effects of botulinum toxin on clinical, gait, and patient-reported outcomes in HSP patients and explore the potential of mobile digital gait analysis to monitor treatment effects and predict treatment response.

View Article and Find Full Text PDF

The human's upright standing is a complex control process that is not yet fully understood. Postural control models can provide insights into the body's internal control processes of balance behavior. Using physiologically plausible models can also help explaining pathophysiological motion behavior.

View Article and Find Full Text PDF

The plant homeodomain finger protein Phf8 is a histone demethylase implicated by mutation in mice and humans in neural crest defects and neurodevelopmental disturbances. Considering its widespread expression in cell types of the central nervous system, we set out to determine the role of Phf8 in oligodendroglial cells to clarify whether oligodendroglial defects are a possible contributing factor to Phf8-dependent neurodevelopmental disorders. Using loss- and gain-of-function approaches in oligodendroglial cell lines and primary cell cultures, we show that Phf8 promotes the proliferation of rodent oligodendrocyte progenitor cells and impairs their differentiation to oligodendrocytes.

View Article and Find Full Text PDF
Article Synopsis
  • Central nervous system (CNS) cells, like microglia and astrocytes, play critical roles in the development and progression of multiple sclerosis (MS) through their inflammatory responses.
  • Recent findings show that these cells not only promote inflammation but can also help resolve it, highlighting their complexity and protective functions.
  • Heparin-binding EGF-like growth factor (HB-EGF) is identified as a key player in providing anti-inflammatory and protective effects during MS, with potential therapeutic implications, especially when administered intranasally in preclinical studies.
View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disease with both genetic and sporadic origins. In this study, we investigated the electrophysiological properties, synaptic activity, and gene expression differences in dopaminergic (DA) neurons derived from induced pluripotent stem cells (iPSCs) of healthy controls, sporadic PD (sPD) patients, and PD patients with E326K-GBA1 mutations. Our results demonstrate reduced sodium currents and synaptic activity in DA neurons derived from PD patients with E326K-GBA1 mutations, suggesting a potential contribution to PD pathophysiology.

View Article and Find Full Text PDF

Biallelic loss of SPG11 function constitutes the most frequent cause of complicated autosomal recessive hereditary spastic paraplegia (HSP) with thin corpus callosum, resulting in progressive multisystem neurodegeneration. While the impact of neuroinflammation is an emerging and potentially treatable aspect in neurodegenerative diseases and leukodystrophies, the role of immune cells in SPG11-HSP patients is unknown. Here, we performed a comprehensive immunological characterization of SPG11-HSP, including examination of three human postmortem brain donations, immunophenotyping of patients' peripheral blood cells and patient-specific induced pluripotent stem cell-derived microglia-like cells (iMGL).

View Article and Find Full Text PDF

Point mutations in the α-synuclein coding gene may lead to the development of Parkinson's disease (PD). PD is often accompanied by other psychiatric conditions, such as anxiety, depression, and drug use disorders, which typically emerge in adulthood. Some of these point mutations, such as SNCA and A30T, have been linked to behavioral effects that are not commonly associated with PD, especially regarding alcohol consumption patterns.

View Article and Find Full Text PDF

Fatty acid hydroxylase-associated neurodegeneration (FAHN/SPG35) is caused by pathogenic variants in and has been linked to a continuum of specific motor and non-motor neurological symptoms, leading to progressive disability. As an ultra-rare disease, its mutational spectrum has not been fully elucidated. Here, we present the prototypical workup of a novel variant, including clinical and in silico validation.

View Article and Find Full Text PDF

Multiple system atrophy (MSA) is a rare and rapidly progressive atypical parkinsonian disorder characterized by oligodendroglial cytoplasmic inclusions containing α-synuclein (α-syn), demyelination, inflammation and neuronal loss. To date, no disease-modifying therapy is available. Targeting α-syn-driven oligodendroglial dysfunction and demyelination presents a potential therapeutic approach for restricting axonal dysfunction, neuronal loss and disease progression.

View Article and Find Full Text PDF

Medication optimization is a common component of the treatment strategy in patients with Parkinson's disease. As the disease progresses, it is essential to compensate for the movement deterioration in patients. Conventionally, examining motor deterioration and prescribing medication requires the patient's onsite presence in hospitals or practices.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a common neurodegenerative movement disorder, characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta and the accumulation of aggregated alpha synuclein (aSyn). The disease often presents with early prodromal non-motor symptoms and later motor symptoms. Diagnosing PD based purely on motor symptoms is often too late for successful intervention, as a significant neuronal loss has already occurred.

View Article and Find Full Text PDF

Sporadic Parkinson's Disease (sPD) is a progressive neurodegenerative disorder caused by multiple genetic and environmental factors. Mitochondrial dysfunction is one contributing factor, but its role at different stages of disease progression is not fully understood. Here, we showed that neural precursor cells and dopaminergic neurons derived from induced pluripotent stem cells (hiPSCs) from sPD patients exhibited a hypometabolism.

View Article and Find Full Text PDF

Background: Exercise therapy is considered effective for the treatment of motor impairment in patients with Parkinson's disease (PD). During the COVID-19 pandemic, training sessions were cancelled and the implementation of telerehabilitation concepts became a promising solution. The aim of this controlled interventional feasibility study was to evaluate the long-term acceptance and to explore initial effectiveness of a digital, home-based, high-frequency exercise program for PD patients.

View Article and Find Full Text PDF
Article Synopsis
  • Progressive supranuclear palsy (PSP) patients, typically older adults, have a distinct pattern of health comorbidities and often take multiple medications compared to those without neurodegenerative diseases.
  • The study analyzed data from over 600 patients, revealing higher rates of circulatory and nervous system diseases in PSP patients, alongside increased occurrences of conditions like diabetes and polyneuropathies.
  • The PSP group showed significantly more polypharmacy, leading to a higher risk of severe drug interactions, highlighting the need for careful management of treatment in these patients.
View Article and Find Full Text PDF

The alteration and aggregation of alpha-synuclein (α-syn) play a crucial role in neurodegenerative diseases collectively termed as synucleinopathies, including Parkinson's disease (PD). The bidirectional interaction of α-syn with lipids and biomembranes impacts not only α-syn aggregation but also lipid homeostasis. Indeed, lipid composition and metabolism are severely perturbed in PD.

View Article and Find Full Text PDF

Background: Hereditary spastic paraplegias (HSPs) cause characteristic gait impairment leading to an increased risk of stumbling or even falling. Biomechanically, gait deficits are characterized by reduced ranges of motion in lower body joints, limiting foot clearance and ankle range of motion. To date, there is no standardized approach to continuously and objectively track the degree of dysfunction in foot elevation since established clinical rating scales require an experienced investigator and are considered to be rather subjective.

View Article and Find Full Text PDF

Understanding of the human body's internal processes to maintain balance is fundamental to simulate postural control behaviour. The body uses multiple sensory systems' information to obtain a reliable estimate about the current body state. This information is used to control the reactive behaviour to maintain balance.

View Article and Find Full Text PDF

Synucleinopathies are a group of neurodegenerative disorders, classically characterized by the accumulation of aggregated alpha synuclein (aSyn) in the central nervous system. Parkinson's disease (PD) and multiple system atrophy (MSA) are the two prominent members of this family. Current treatment options mainly focus on the motor symptoms of these diseases.

View Article and Find Full Text PDF

Studying human somatic cell-to-neuron conversion using primary brain-derived cells as starting cell source is hampered by limitations and variations in human biopsy material. Thus, delineating the molecular variables that allow changing the identity of somatic cells, permit adoption of neuronal phenotypes, and foster maturation of induced neurons (iNs) is challenging. Based on our previous results that pericytes derived from the adult human cerebral cortex can be directly converted into iNs (Karow et al.

View Article and Find Full Text PDF

Background: Gait variability in people with multiple sclerosis (PwMS) reflects disease progression or may be used to evaluate treatment response. To date, marker-based camera systems are considered as gold standard to analyze gait impairment in PwMS. These systems might provide reliable data but are limited to a restricted laboratory setting and require knowledge, time, and cost to correctly interpret gait parameters.

View Article and Find Full Text PDF

The downstream regulatory element antagonist modulator (DREAM) modulates ion channel function and gene transcription. Functionally, DREAM is implicated in physiological and pathological processes including cell proliferation, inflammation, and nociception. Despite its multiple functions and robust expression in forebrain tissue, neurons and glial cells, the role of DREAM in regard to cellular plasticity and tumor necrosis factor (TNF)-mediated inflammation is largely unexplored.

View Article and Find Full Text PDF