Primary ciliopathies are heterogenous disorders resulting from perturbations in primary cilia form and/or function. Primary cilia are cellular organelles which mediate key signaling pathways during development, such as the sonic hedgehog (SHH) pathway which is required for neuroepithelium and central nervous system development. Joubert syndrome is a primary ciliopathy characterized by cerebellar/brain stem malformation, hypotonia, and developmental delays.
View Article and Find Full Text PDFPIGQ (OMIM *605754) encodes phosphatidylinositol glycan biosynthesis class Q (PIGQ) and is required for proper functioning of an N-acetylglucosamine transferase complex in a similar manner to the more established PIGA, PIGC, and PIGH. There are two previous patients reported with homozygous and apparently deleterious PIGQ mutations. Here, we provide the first detailed clinical report of a patient with heterozygous deleterious mutations associated with glycosylphosphatidylinositol-anchored protein (GPI-AP) biosynthesis deficiency.
View Article and Find Full Text PDFColony stimulating factor 1 receptor (CSF1R) plays key roles in regulating development and function of the monocyte/macrophage lineage, including microglia and osteoclasts. Mono-allelic mutations of CSF1R are known to cause hereditary diffuse leukoencephalopathy with spheroids (HDLS), an adult-onset progressive neurodegenerative disorder. Here, we report seven affected individuals from three unrelated families who had bi-allelic CSF1R mutations.
View Article and Find Full Text PDFOdontochondrodysplasia (ODCD) is an unresolved genetic disorder of skeletal and dental development. Here, we show that ODCD is caused by hypomorphic TRIP11 mutations, and we identify ODCD as the nonlethal counterpart to achondrogenesis 1A (ACG1A), the known null phenotype in humans. TRIP11 encodes Golgi-associated microtubule-binding protein 210 (GMAP-210), an essential tether protein of the Golgi apparatus that physically interacts with intraflagellar transport 20 (IFT20), a component of the ciliary intraflagellar transport complex B.
View Article and Find Full Text PDFCongenital insensitivity to pain with anhidrosis (CIPA), also known as hereditary sensory and autonomic neuropathy type IV (HSAN-IV), is a rare and severe autosomal recessive disorder. We report on an adult female patient whose clinical findings during childhood were not recognized as CIPA. There was neither complete anhidrosis nor a recognizable sensitivity to heat.
View Article and Find Full Text PDFBiallelic loss-of-function mutations in TRIP11, encoding the golgin GMAP-210, cause the lethal human chondrodysplasia achondrogenesis 1A (ACG1A). We now find that a homozygous splice-site mutation of the lamin B receptor (LBR) gene results in the same phenotype. Intrigued by the genetic heterogeneity, we compared GMAP-210- and LBR-deficient primary cells to unravel how particular mutations in LBR cause a phenocopy of ACG1A.
View Article and Find Full Text PDFPresented are two patients with autosomal dominant omodysplasia and mutations in the gene. The mutations identified have been recently reported, suggesting the possibility of recurrent mutations. The phenotypes of these patients overlap with what has been previously reported, though intellectual disability as seen in our patient is not typical.
View Article and Find Full Text PDFPediatr Endocrinol Rev
November 2017
The official nosology and classification of genetic skeletal disorders lists more than 500 recognized diagnostic entities and groups them by clinical, radiographic and - if available - molecular data. The list helps in the diagnosis of individual cases, in the delineation of novel disorders, and in building bridges between clinicians and scientists. It can be the basis of a nosology-guided skeletal dysplasia registry and archive.
View Article and Find Full Text PDFBackground: Schimke immuno-osseous dysplasia (SIOD) is a multisystemic disorder caused by biallelic mutations in the SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily A-like 1 (SMARCAL1) gene. Changes in gene expression underlie the arteriosclerosis and T-cell immunodeficiency of SIOD; therefore, we hypothesized that SMARCAL1 deficiency causes the focal segmental glomerulosclerosis (FSGS) of SIOD by altering renal gene expression. We tested this hypothesis by gene expression analysis of an SIOD patient kidney and verified these findings through immunofluorescent analysis in additional SIOD patients and a genetic interaction analysis in Drosophila.
View Article and Find Full Text PDFSpondyloepimetaphyseal dysplasias (SEMDs) comprise a heterogeneous group of autosomal-dominant and autosomal-recessive disorders. An apparent X-linked recessive (XLR) form of SEMD in a single Italian family was previously reported. We have been able to restudy this family together with a second family from Korea by segregating a severe SEMD in an X-linked pattern.
View Article and Find Full Text PDFBackground: Osteosclerotic metaphyseal dysplasia (OSMD) is a unique form of osteopetrosis characterised by severe osteosclerosis localised to the bone ends. The mode of inheritance is autosomal recessive. Its genetic basis is not known.
View Article and Find Full Text PDFAm J Med Genet C Semin Med Genet
December 2015
Fractures in infancy or early childhood require prompt evaluation with consideration of accidental or non-accidental trauma as well as a large number of genetic disorders that predispose to fractures. Bone fragility has been reported in more than 100 genetic disorders, including skeletal dysplasias, inborn errors of metabolism and congenital insensitivity to pain. Most of these disorders are rare but often have distinctive clinical or radiographic findings to assist in the diagnosis.
View Article and Find Full Text PDFThe purpose of the nosology is to serve as a "master" list of the genetic disorders of the skeleton to facilitate diagnosis and to help delineate variant or newly recognized conditions. This is the 9th edition of the nosology and in comparison with its predecessor there are fewer conditions but many new genes. In previous editions, diagnoses that were phenotypically indistinguishable but genetically heterogenous were listed separately but we felt this was an unnecessary distinction.
View Article and Find Full Text PDFWe describe a novel recognizable phenotype characterized by anophthalmia, a distinctive skeletal dysplasia and intellectual disability. Radiographic anomalies include severe rhizomelic shortness of the limbs and abnormal joint formation. Recent exome studies showed that these characteristics are part of the phenotypic spectrum of MAB21L2 gene mutations which cause a range of structural eye malformations such as microphthalmia/anophthalmia and ocular coloboma.
View Article and Find Full Text PDFIntroduction: Mesomelic dysplasias are a group of skeletal disorders characterised by shortness of the middle limb segments (mesomelia). They are divided into 11 different categories. Among those without known molecular basis is mesomelic dysplasia Savarirayan type, characterised by severe shortness of the middle segment of the lower limb.
View Article and Find Full Text PDFThe short rib-polydactyly syndromes are a heterogeneous group of lethal autosomal recessive disorders (SRP I-IV), which result from cellular ciliary dysfunction during embryogenesis. Diagnosis is conventionally based on radiographic imaging. Since 1976, postmortem investigations of 5 affected fetuses or stillbirths have been undertaken and the visceral abnormalities have been documented.
View Article and Find Full Text PDFWe identified four different missense mutations in the single-exon gene MAB21L2 in eight individuals with bilateral eye malformations from five unrelated families via three independent exome sequencing projects. Three mutational events altered the same amino acid (Arg51), and two were identical de novo mutations (c.151C>T [p.
View Article and Find Full Text PDFAm J Med Genet C Semin Med Genet
August 2012
The so-called "enchondromatoses" are skeletal disorders defined by the presence of ectopic cartilaginous tissue within bone tissue. The clinical and radiographic features of the different enchondromatoses are distinct, and grouping them does not reflect a common pathogenesis but simply a similar radiographic appearance and thus the need for a differential diagnosis. Recent advances in the understanding of their molecular and cellular bases confirm the heterogeneous nature of the different enchondromatoses.
View Article and Find Full Text PDFOsteogenesis imperfecta type IIC (OI IIC) is a rare variant of lethal OI that has been considered to be an autosomal recessive trait. Twisted, slender long bones with dense metaphyseal margins and normal vertebral bodies in OI IIC contrast with crumpled, thick long bones and multiple vertebral compression fractures in OI IIA. Here, we report on two sporadic patients with classical OI IIC and a pair of siblings, with features of OI IIC but less distortion of the tubular bones (OI dense bone variant).
View Article and Find Full Text PDFWe used whole-exome sequencing to study three individuals with a distinct condition characterized by short stature, chondrodysplasia with brachydactyly, congenital joint dislocations, cleft palate, and facial dysmorphism. Affected individuals carried homozygous missense mutations in IMPAD1, the gene coding for gPAPP, a Golgi-resident nucleotide phosphatase that hydrolyzes phosphoadenosine phosphate (PAP), the byproduct of sulfotransferase reactions, to AMP. The mutations affected residues in or adjacent to the phosphatase active site and are predicted to impair enzyme activity.
View Article and Find Full Text PDFVertebral and metaphyseal dysplasia, spasticity with cerebral calcifications, and strong predisposition to autoimmune diseases are the hallmarks of the genetic disorder spondyloenchondrodysplasia. We mapped a locus in five consanguineous families to chromosome 19p13 and identified mutations in ACP5, which encodes tartrate-resistant phosphatase (TRAP), in 14 affected individuals and showed that these mutations abolish enzyme function in the serum and cells of affected individuals. Phosphorylated osteopontin, a protein involved in bone reabsorption and in immune regulation, accumulates in serum, urine and cells cultured from TRAP-deficient individuals.
View Article and Find Full Text PDF