Functional magnetic resonance imaging (fMRI) of the spinal cord is relevant for studying sensation, movement, and autonomic function. Preprocessing of spinal cord fMRI data involves segmentation of the spinal cord on gradient-echo echo planar imaging (EPI) images. Current automated segmentation methods do not work well on these data, due to the low spatial resolution, susceptibility artifacts causing distortions and signal drop-out, ghosting, and motion-related artifacts.
View Article and Find Full Text PDFThe application of functional magnetic resonance imaging (fMRI) to the human spinal cord is still a relatively small field of research and faces many challenges. Here we aimed to probe the limitations of task-based spinal fMRI at 3T by investigating the reliability of spinal cord blood oxygen level dependent (BOLD) responses to repeated nociceptive stimulation across two consecutive days in 40 healthy volunteers. We assessed the test-retest reliability of subjective ratings, autonomic responses, and spinal cord BOLD responses to short heat pain stimuli (1s duration) using the intraclass correlation coefficient (ICC).
View Article and Find Full Text PDFForce generation is a crucial element of dexterity and a highly relevant skill of the human motor system. How cerebral and spinal components interact and how spinal activation is associated with the activity in the cerebral primary motor and premotor areas is poorly understood. Here, we conducted combined cortico-spinal functional magnetic resonance imaging during a simple visually guided isometric force generation task in 20 healthy young subjects.
View Article and Find Full Text PDFThe investigation of spontaneous fluctuations of the blood-oxygen-level-dependent (BOLD) signal has recently been extended from the brain to the spinal cord, where it has stimulated interest from a clinical perspective. A number of resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated robust functional connectivity between the time series of BOLD fluctuations in bilateral dorsal horns and between those in bilateral ventral horns, in line with the functional neuroanatomy of the spinal cord. A necessary step prior to extension to clinical studies is assessing the reliability of such resting-state signals, which we aimed to do here in a group of 45 healthy young adults at the clinically prevalent field strength of 3T.
View Article and Find Full Text PDFPurpose: To implement slice-specific z-shim in simultaneous multislice (SMS) imaging in order to minimize signal losses in slice-accelerated T *-weighted acquisitions, such as for spinal cord functional neuroimaging.
Methods: The RF envelopes of the individual slice bands are temporally shifted on the plateau of the slice-selection gradient pulse before being combined to the multiband RF envelope. Thus, optimum z-shims can be realized for each slice of an SMS excitation, which is in contrast to conventional z-shimming.
Cortico-spinal fMRI acquisitions aim to investigate direct interactions between brain and spinal cord, e.g. during motor output or pain processing, by covering both regions in a single measurement.
View Article and Find Full Text PDFStudy Design: This investigation was a cohort study that included: 36 typically developing (TD) children and 19 children with spinal cord lesions who underwent spinal cord MRI.
Objectives: To investigate diffusion tensor imaging (DTI) cervical and thoracic spinal cord changes in pediatric patients that have clinically traumatic and non-traumatic spinal cord injury (SCI) without MR (SCIWOMR) abnormalities.
Setting: Thomas Jefferson University, Temple University, Shriners Hospitals for Children all in Philadelphia, USA.
The spinal cord is important for sensory guidance and execution of skilled movements. Yet its role in human motor learning is not well understood. Despite evidence revealing an active involvement of spinal circuits in the early phase of motor learning, whether long-term learning engages similar changes in spinal cord activation and functional connectivity remains unknown.
View Article and Find Full Text PDFIn the absence of any task, both the brain and spinal cord exhibit spontaneous intrinsic activity organised in a set of functionally relevant neural networks. However, whether such resting-state networks (RSNs) are interconnected across the brain and spinal cord is unclear. Here, we used a unique scanning protocol to acquire functional images of both brain and cervical spinal cord (CSC) simultaneously and examined their spatiotemporal correspondence in humans.
View Article and Find Full Text PDFPurpose: To detect microscopic diffusion anisotropy in human cortical gray matter in vivo with double diffusion encoding experiments.
Methods: Double diffusion encoding experiments were performed on a 3 T whole-body MR system using echo-planar imaging. Angular double diffusion encoding measurements were acquired with 8 × 8 and 12 × 12 planar direction combinations and were analyzed in three regions of interest containing white matter, mostly cortical gray matter, and one having significant contributions from cerebrospinal fluid.
There are no studies to date,describing changes in the diffusion tensor imaging (DTI) metrics of the white matter (WM) regions of the entire cervical and thoracic spinal cord (SC) remote from the lesion in pediatric spinal cord injury (SCI) subjects. The purpose of this study was to determine whether DTI at sites cephalad and caudal to a lesion provides measures of cord abnormalities in children with chronic SCI. A retrospective study included 10 typically developing subjects (TD) and 10 subjects with chronic SCI who underwent SC imaging in 2014-2017.
View Article and Find Full Text PDFBackground And Objective: Diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) are two techniques that can measure white matter integrity of the spinal cord. Recently, DTI indices have been shown to change with age. The purpose of this study is (a) to evaluate the maturational states of the entire pediatric spinal cord using DTI and DTT indices including fractional anisotropy (FA), mean diffusivity (MD), mean length of white matter fiber tracts and tract density and (b) to analyze the DTI and DTT parameters along the entire spinal cord as a function of spinal cord levels and age.
View Article and Find Full Text PDFIn animals, 17-beta-estradiol (E2) enhances hippocampal plasticity in a dose-dependent, monotonically increasing manner, but this relationship can also exhibit an inverted U-shaped function. To investigate E2's dose-response function in the human hippocampus, we pharmacologically increased E2 levels in 125 naturally cycling women (who were in their low-hormone menstruation phase) to physiological (equivalent to menstrual cycle peak) and supraphysiological (equivalent to levels during early pregnancy) concentrations in a placebo-controlled design. Twenty-four hours after first E2 intake, we measured brain activity during encoding of neutral and negative pictures and then tested recognition memory 24 h after encoding.
View Article and Find Full Text PDFPurpose: Ghost artifacts are a major contributor to degradation of spinal cord diffusion tensor images. A multi-stage post-processing pipeline was designed, implemented and validated to automatically remove ghost artifacts arising from reduced field of view diffusion tensor imaging (DTI) of the pediatric spinal cord.
Method: A total of 12 pediatric subjects including 7 healthy subjects (mean age=11.
The aim of this study is to assess the utility and effectiveness of diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) of the entire pediatric cervical and thoracic spinal cord toward discrimination of typically developing (TD) controls and subjects with spinal cord injury (SCI). A total of 43 pediatric subjects, including 23 TD subjects ranging in age from 6 to 16 years old and 20 subjects with SCI ranging in age from 7 to 16 years, were recruited and scanned using a 3.0 Tesla magnetic resonance scanner.
View Article and Find Full Text PDFThe study of spontaneous fluctuations in the blood-oxygen-level-dependent (BOLD) signal has recently been extended from the brain to the spinal cord. Two ultra-high field functional magnetic resonance imaging (fMRI) studies in humans have provided evidence for reproducible resting-state connectivity between the dorsal horns as well as between the ventral horns, and a study in non-human primates has shown that these resting-state signals are impacted by spinal cord injury. As these studies were carried out at ultra-high field strengths using region-of-interest (ROI) based analyses, we investigated whether such resting-state signals could also be observed at the clinically more prevalent field strength of 3T.
View Article and Find Full Text PDFPurpose: It is well known that pathological changes in tissue alter its mechanical properties. This holds also true for brain tissue. In case of the brain, however, obtaining information about these properties is hard due to the surrounding cranial bone.
View Article and Find Full Text PDFThe fractional anisotropy (FA) that can be derived from diffusion tensor imaging (DTI), is ambiguous because it not only depends on the tissue microstructure but also on the axon or fiber orientation distribution within a voxel. Measures of the microscopic diffusion anisotropy, like the microscopic anisotropy index (MA) that can be determined with so-called double-wave-vector (DWV) or double diffusion encoding (DDE) imaging, are independent of this orientation distribution and, thus, offer a more direct and undisguised access to the tissue structure on a cellular or microscopic scale. In this study, FA and MA measurements were performed in a group of aged (>60y), healthy volunteers and compared to the data obtained recently for a group of young (<33y), healthy volunteers to reveal age-related differences.
View Article and Find Full Text PDFMagnetic resonance based diffusion imaging has been gaining more utility and clinical relevance over the past decade. Using conventional echo planar techniques, it is possible to acquire and characterize water diffusion within the central nervous system (CNS); namely in the form of Diffusion Weighted Imaging (DWI) and Diffusion Tensor Imaging (DTI). While each modality provides valuable clinical information in terms of the presence of diffusion and its directionality, both techniques are limited to assuming an ideal Gaussian distribution for water displacement with no intermolecular interactions.
View Article and Find Full Text PDF