Flavonoids are a very diverse group of plant secondary metabolites with a wide array of activities in plants, as well as in nutrition and health. All flavonoids are derived from a limited number of flavanone intermediates, which serve as substrates for a variety of enzyme activities, enabling the generation of diversity in flavonoid structures. Flavonoids can be characteristic metabolites, like isoflavonoids for legumes.
View Article and Find Full Text PDFSince the early evolution of land plants from primitive green algae, phenylpropanoid compounds have played an important role. In the biosynthesis of phenylpropanoids, 4-coumarate:CoA ligase (4CL; EC 6.2.
View Article and Find Full Text PDFBranched 1,6-1,3-beta-glucans from Phytophthora sojae cell walls represent pathogen-associated molecular patterns (PAMPs) that have been shown to mediate the activation of plant defence reactions in many legumes. In soybean, a receptor protein complex containing a high affinity beta-glucan-binding protein (GBP) was identified and investigated in detail. In the model legume Medicago truncatula, used for functional genomic studies of various plant-microbe interactions, a high-affinity beta-glucan-binding site was characterized biochemically.
View Article and Find Full Text PDFPlants recognize microbial pathogens by discriminating pathogen-associated molecular patterns from self-structures. We study the non-host disease resistance of soybean (Glycine max L.) to the oomycete, Phytophthora sojae.
View Article and Find Full Text PDFThe Avr1b locus is required for avirulence of the oomycete pathogen Phytophthora sojae on soybeans carrying resistance gene Rps1b. One of the Avr genes of the locus (Avr1b-1) was shown to encode an elicitor. We have analyzed the spatial and temporal expression patterns of Avr1b-1 in comparison to defense-related genes induced in soybean.
View Article and Find Full Text PDFThe beta-glucan-binding protein (GBP) of soybean (Glycine max L.) has been shown to contain two different activities. As part of the plasma membrane-localized pathogen receptor complex, it binds a microbial cell wall elicitor, triggering the activation of defence responses.
View Article and Find Full Text PDFMol Plant Microbe Interact
September 2005
Inducible and specific ion fluxes on plasma membranes represent very early events during elicitation of plant cells. The hierarchy of such ion fluxes involved is still unknown. The effect of Phytophthora sojae-derived beta-glucan elicitors on the plasma membrane potential as well as on surface K+, Ca2+, and H+ fluxes has been investigated on soybean roots using ion-selective microelectrodes.
View Article and Find Full Text PDFCoronalon, a synthetic 6-ethyl indanoyl isoleucine conjugate, has been designed as a highly active mimic of octadecanoid phytohormones that are involved in insect and disease resistance. The spectrum of biological activities that is affected by coronalon was investigated in nine different plant systems specifically responding to jasmonates and/or 12-oxo-phytodienoic acid. In all bioassays analyzed, coronalon demonstrated a general strong activity at low micromolar concentrations.
View Article and Find Full Text PDFA successful defense against potential pathogens requires that a host organism is able to discriminate between self and nonself structures. Soybean (Glycine max L.) exploits a specific molecular pattern, a 1,6-beta-linked and 1,3-beta-branched heptaglucoside (HG), present in cell walls of the oomycetal pathogen Phytophthora sojae, as a signal compound eliciting the onset of defense reactions.
View Article and Find Full Text PDFOxylipins of the jasmonate pathway and synthetic functional analogs have been analyzed for their elicitor-like activities in an assay based on the induced accumulation of glyceollins, the phytoalexins of soybean (Glycine max L.), in cell suspension cultures of this plant. Jasmonic acid (JA) and its methyl ester showed weak phytoalexin-inducing activity when compared to an early jasmonate biosynthetic precursor, 12-oxo-phytodienoic acid (OPDA), as well as to the bacterial phytotoxin coronatine and certain 6-substituted indanoyl-L-isoleucine methyl esters, which all were highly active.
View Article and Find Full Text PDFPlant 4-coumarate:coenzyme A ligases, acyl-CoA ligases, peptide synthetases, and firefly luciferases are grouped in one family of AMP-binding proteins. These enzymes do not only use a common reaction mechanism for the activation of carboxylate substrates but are also very likely marked by a similar functional architecture. In soybean, four 4-coumarate:CoA ligases have been described that display different substrate utilization profiles.
View Article and Find Full Text PDF4-Coumarate:CoA ligase (4CL) is involved in the formation of coenzyme A thioesters of hydroxycinnamic acids that are central substrates for subsequent condensation, reduction, and transfer reactions in the biosynthesis of plant phenylpropanoids. Previous studies of 4CL appear to suggest that many isoenzymes are functionally equivalent in supplying substrates to various subsequent branches of phenylpropanoid biosyntheses. In contrast, divergent members of a 4CL gene family were identified in soybean (Glycine max L.
View Article and Find Full Text PDF