Here, we report the annotated genome sequence for a heterokont alga from the class Xanthophyceae. This high-biomass-producing strain, Tribonema minus UTEX B 3156, was isolated from a wastewater treatment plant in California. It is stable in outdoor raceway ponds and is a promising industrial feedstock for biofuels and bioproducts.
View Article and Find Full Text PDFPhotosynthetic algae represent a large, diverse bioresource potential. Yellow-green algae of the genus Tribonema are candidates for production of biofuels and other bioproducts. We report on a filamentous isolate from an outdoor raceway polyculture growing on municipal reclaimed wastewater which we classified as T.
View Article and Find Full Text PDFBackground: The green microalga Dunaliella salina accumulates a high proportion of β-carotene during abiotic stress conditions. To better understand the intracellular flux distribution leading to carotenoid accumulation, this work aimed at reconstructing a carbon core metabolic network for D. salina CCAP 19/18 based on the recently published nuclear genome and its validation with experimental observations and literature data.
View Article and Find Full Text PDFThe exact mechanisms underlying the distribution of fixed carbon within photoautotrophic cells, also referred to as carbon partitioning, and the subcellular localization of many enzymes involved in carbon metabolism are still unknown. In contrast to the majority of investigated green algae, higher plants have multiple isoforms of the glycolytic enolase enzyme, which are differentially regulated in higher plants. Here we report on the number of gene copies coding for the enolase in several genomes of species spanning the major classes of green algae.
View Article and Find Full Text PDFIsoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted.
View Article and Find Full Text PDFBackground: Dunaliella salina Teodoresco, a unicellular, halophilic green alga belonging to the Chlorophyceae, is among the most industrially important microalgae. This is because D. salina can produce massive amounts of beta-carotene, which can be collected for commercial purposes, and because of its potential as a feedstock for biofuels production.
View Article and Find Full Text PDFThe unicellular green alga Dunaliella salina is a halotolerant eukaryotic organism. Its halophytic properties provide an important advantage for open pond mass cultivation, since D. salina can be grown selectively.
View Article and Find Full Text PDFXanthophylls (oxygen derivatives of carotenes) are essential components of the plant photosynthetic apparatus. Lutein, the most abundant xanthophyll, is attached primarily to the bulk antenna complex, light-harvesting complex (LHC) II. We have used mutations in Arabidopsis thaliana that selectively eliminate (and substitute) specific xanthophylls in order to study their function(s) in vivo.
View Article and Find Full Text PDFTo elucidate the mechanism of an irradiance-dependent adjustment in the chlorophyll (Chl) antenna size of Dunaliella salina, we investigated the regulation of expression of the Chl a oxygenase (CAO) and light-harvesting complex b (Lhcb) genes as a function of Chl availability in the photosynthetic apparatus. After a high-light to low-light shift of the cultures, levels of both CAO and Lhcb transcripts were rapidly induced by about 6-fold and reached a high steady-state level within 1.5 h of the shift.
View Article and Find Full Text PDF