This study addressed the separation problem of colloidal catalytic powder from its solution and pore blockage of traditional metallic oxides by fabricating nanoporous composites of titanium (Ti)-vanadium (V) oxide via magnetron sputtering, electrochemical anodization, and annealing processes. The effect of V-deposited loading on the composite semiconductors was investigated by varying V sputtering power (20-250 W) to correlate their physicochemical properties to the photodegradation performance of methylene blue. The obtained semiconductors revealed circular and elliptical pores (14-23 nm) and formed different metallic and metallic oxide crystalline phases.
View Article and Find Full Text PDFInt J Environ Res Public Health
April 2022
Certified disposable respirators afford important protection from hazardous aerosols but lose performance as they are worn. This study examines the effect of wear time on filtration efficiency. Disposable respirators were worn by CSIRO staff over a period of 4 weeks in early 2020.
View Article and Find Full Text PDFInt J Environ Res Public Health
January 2022
The potential for alcoholic vapors emitted by common sanitizing treatments to deteriorate the (electrostatic) filtration performance of disposable respirator masks has been investigated. Reports in the literature and some standard test methods provide a confusing and ambiguous picture concerning the relevance of this effect. Four different types of exposure were investigated in this study to clarify the effect of alcoholic vapor emissions on respirator masks.
View Article and Find Full Text PDFAir pollution is a universal concern. The suspended solid/liquid particles in the air and volatile organic compounds (VOCs) are ubiquitous. Synthetic polymer-based air filter media not only has disposal issues but also is a source of air and water pollution at the end of their life cycle.
View Article and Find Full Text PDFAirborne aerosol pollutants generated from combustion vehicles exhausts, industrial facilities and microorganisms represent serious health challenges. Although membrane separation has emerged as a technique of choice for airborne contaminants removal, allowing for both size exclusion and surface adsorption. Here, electrospun carbon nanofibre mats were formed from poly(acrylonitrile) by systematic stabilization and carbonization processes to generate flexible and self-standing membranes for air filtration.
View Article and Find Full Text PDFMembranes decorated with biocide materials have shown great potential for air sanitization but can suffer from biocide agent leaching by dissolution in water. In order to tackle the diffusion of biocide metal ions from the fiber matrix, composite nanofiber membranes of poly(vinyl alcohol) (PVA) cross-linked with copper (II) acetate have been successfully engineered via sol-gel electrospinning, providing a stable mean for air bactericidal microfiltration. The novelty lies in the bonding strength and homogeneous distribution of the fiber surface biocide, where biocide metals are incorporated as a sol within a polymer matrix.
View Article and Find Full Text PDFThe development of fibrous air filters exhibiting high air filtration efficiency, low energy consumption, and self-cleaning properties is a critical challenge to generate the next generation of resilient air filtration systems. Nano-fibrous mats typically exhibit higher particle capture efficiency but may also lead to higher airflow resistance compared to macro-fibrous materials due to their tighter structure. In this paper, novel catalytic membranes mats were fabricated through a one-pot synthesis from ammonium tetrathiomolybdate (ATTM) doped poly(acrylonitrile) (PAN) nanofibers for sub-micron diameter aerosol particle removal.
View Article and Find Full Text PDFElectrospun nanofibrous membranes were engineered for aerosol particle removal by controlling the fiber density and alignment across electrospun mats. Electrospun nanofiber membranes were deposited on both, rotatory drum and stationary collectors, to investigate the effect of fiber alignment on filtration performance. Poly(acrylonitrile)/dimethyl formamide (PAN/DMF) solutions were used to produce membranes for applications in air purification.
View Article and Find Full Text PDFPhotocatalytic conversion of carbon dioxide (CO) to useful products has potential to address the adverse environmental impact of global warming. However, most photocatalysts used to date exhibit limited catalytic performance, due to poor CO adsorption capacity, inability to efficiently generate photoexcited electrons, and/or poor transfer of the photogenerated electrons to CO molecules adsorbed on the catalyst surface. The integration of inorganic semiconductor nanoparticles across metal organic framework (MOF) materials has potential to yield new hybrid materials, combining the high CO adsorption capacity of MOF and the ability of the semiconductor nanoparticles to generate photoexcited electrons.
View Article and Find Full Text PDFPlasma treatments are emerging as superior efficiency treatment for high surface to volume ratio materials to tune functional group densities and alter crystallinity due to their ability to interact with matter at the nanoscale. The purpose of this study is to assess for the first time the long term stability of surface functional groups introduced across the surface of carbon nanotube materials for a series of oxidative, reductive and neutral plasma treatment conditions. Both plasma duration dose matrix based exposures and time decay experiments, whereby the surface energy of the materials was evaluated periodically over a one-month period, were carried out.
View Article and Find Full Text PDFAdvancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation.
View Article and Find Full Text PDFAlthough emergent properties from self-assembly of carbon nanotubes have been described in various forms there is so far no systematic process for the preparation of dense arrays of aligned nanotubes. Here we present a systematic study on the analysis of the alignment of carbon nanotubes within solvent densified carbon nanotube forests. Highly periodic patterns with length scales of the order of the millimetres were generated and characterized by electron and optical micrographs and compared to results from small angle X-ray scattering performed at various incident beam angles.
View Article and Find Full Text PDFThe effect of sonication temperature on the debundling of carbon nanotube (CNT) macro-bundles is reported and demonstrated by analysis with different particle sizing methods. The change of bundle size over time and after several comparatively gentle sonication cycles of suspensions at various temperatures is reported. A novel technique is presented that produces a more homogeneous nanotube dispersion by lowering the temperature during sonication.
View Article and Find Full Text PDFIn this study, we focus on processing and characterizing composite material structures made of carbon nanotubes (CNTs) and reproducibly engineering macro-pores inside their structure. Highly porous bucky-papers were fabricated from pure carbon nanotubes by dispersing and stabilizing large 1 μm polystyrene beads within a carbon nanotube suspension. The polystyrene beads, homogeneously dispersed across the thickness of the bucky-papers, were then either dissolved or carbonized to generate macro cavities of different shape and properties.
View Article and Find Full Text PDFMembranes are crucial in modern industry and both new technologies and materials need to be designed to achieve higher selectivity and performance. Exotic materials such as nanoparticles offer promising perspectives, and combining both their very high specific surface area and the possibility to incorporate them into macrostructures have already shown to substantially increase the membrane performance. In this paper we report on the fabrication and engineering of metal-reinforced carbon nanotube (CNT) Bucky-Paper (BP) composites with tuneable porosity and surface pore size.
View Article and Find Full Text PDF