Publications by authors named "Jurecic V"

Klippel-Trenaunay syndrome (KTS) is a disorder primarily characterized by capillary-venous vascular malformations associated with altered limb bulk and/or length. We report the identification of a balanced translocation involving chromosomes 8q22.3 and 14q13 in a patient with a vascular and tissue overgrowth syndrome consistent with KTS.

View Article and Find Full Text PDF

Three highly homologous homeobox genes (caupolican, araucan and mirror) have been identified in Drosophila. These genes belong to the novel Iroquois complex, which acts as a pre-pattern molecule in Drosophila neurogenesis. Recently several vertebrate Iroquois homologues (Irx) were isolated and found to be involved in pattern formation of various tissues.

View Article and Find Full Text PDF

DiGeorge syndrome is characterized by cardiovascular, thymus and parathyroid defects and craniofacial anomalies, and is usually caused by a heterozygous deletion of chromosomal region 22q11.2 (del22q11) (ref. 1).

View Article and Find Full Text PDF

The NFAR gene (nuclear factor associated with dsRNA) encodes a putative transcription-associated factor that we have shown is a substrate for the interferon-inducible, dsRNA-dependent protein kinase, PKR. However, our protein expression analysis has revealed that NFAR exists as two major protein species of 90 kDa (NFAR-1) and 110 kDa (NFAR-2) in the cell. To resolve the genetic identity of NFAR-1 and -2, we carried out sequence analysis of genomic and cDNA NFAR clones and determined that the coding region of this gene spans 16.

View Article and Find Full Text PDF

Chromosomal rearrangements are important resources for genetic studies. Recently, a Cre-loxP-based method to introduce defined chromosomal rearrangements (deletions, duplications, and inversions) into the mouse genome (chromosome engineering) has been established. To explore the limits of this technology systematically, we have evaluated this strategy on mouse chromosome 11.

View Article and Find Full Text PDF

The heterozygous chromosome deletion within the band 22q11 (del22q11) is an important cause of congenital cardiovascular defects. It is the genetic basis of DiGeorge syndrome and causes the most common deletion syndrome in humans. Because the deleted region is largely conserved in the mouse, we were able to engineer a chromosome deletion (Df1) spanning a segment of the murine region homologous to the human deleted region.

View Article and Find Full Text PDF

The newly recognized steroid receptor coactivators (SRC-1, SRC-2, and SRC-3) belong to a homologous gene family and are important transcriptional mediators for nuclear receptors. Through fluorescence in situ hybridization, we have mapped the mouse SRC-1, SRC-2, and SRC-3 genes to chromosomal locations 12A2-A3, 1A3-A5, and 2H2-H4, respectively. By screening a mouse genomic DNA library, performing long-range polymerase chain reaction and sequencing, we have cloned and characterized the mouse SRC-3 gene.

View Article and Find Full Text PDF

We have constructed a complete coverage BAC contig map that spans a 12-Mb genomic segment in the human chromosome 16p13.1-p11.2 region.

View Article and Find Full Text PDF

Microphthalmia with linear skin defects (MLS) is an X-linked dominant male-lethal syndrome caused by different deletions of chromosome Xp22. Through the screening of cDNA libraries with the cross-species conserved marker 61B3-R (DXS1141), we identified a new gene at the telomeric breakpoint of the MLS critical region, which encodes a transcript containing a RING finger domain. This novel gene was independently cloned by another group and found to be mutated in Opitz syndrome.

View Article and Find Full Text PDF

We report on a patient with DiGeorge syndrome (DGS) phenotype or anomaly and an unbalanced translocation [45,XY,-10,-22,+der(10),t(10;22)(p13;q11)] resulting in monosomy of 10p13-pter and 22q11-pter. Because both regions involved in this rearrangement have been implicated in DGS, we performed a molecular cytogenetic analysis of both loci in this patient. Results indicate that the chromosome 22 DGS locus is intact but that the terminal deletion of the short arm of chromosome 10 is adjacent to or partially overlapping with the recently defined consensus deleted region observed in DGS patients with 10p deletions.

View Article and Find Full Text PDF

We have constructed a comparative map in mouse of the critical region of human 22q11 deleted in DiGeorge (DGS) and Velocardiofacial (VCFS) syndromes. The map includes 11 genes potentially haploinsufficient in these deletion syndromes. We have localized all the conserved genes to mouse Chromosome (Chr) 16, bands B1-B3.

View Article and Find Full Text PDF

Transaldolase (TAL) is a key enzyme of the pentose phosphate pathway, which is responsible for generation of reducing equivalents to protect cellular integrity from reactive oxygen intermediates. While exons 2 and 3 are highly repetitive, the complete TAL-H gene is mapped to a single genomic locus (TALDO1(2)) by several independent approaches. Southern blot hybridization of a 827-bp 3' EcoRI fragment of the TAL-H cDNA to human-mouse somatic cell hybrid DNA localized TALDO1 to the p13-->pter region of chromosome 11.

View Article and Find Full Text PDF

Interrupted aortic arch (IAA) type B is a congenital heart defect believed to be caused by an anomaly of bronchial arch mesenchymal development. IAA type B has been associated with DiGeorge syndrome (DGS), which includes conotruncal heart defects, T-cell immunodeficiency, hypocalcemia, and facial abnormalities. The great majority of DGS cases are associated with hemizygous deletions at the chromosome 22q11 locus.

View Article and Find Full Text PDF

The acronym CATCH22 is used to indicate collectively a group of related phenotypes, namely velocardiofacial syndrome (VCFS), DiGeorge anomaly (DGA), and conotruncal anomaly face, which are associated with deletions within 22q11.2 in the great majority of patients. A deletion map has allowed us to delimit a smallest region of deletion overlap, considerably smaller than the commonly deleted region.

View Article and Find Full Text PDF

Velo-cardio-facial (VCFS) or Shprintzen syndrome is associated with deletions in a region of chromosome 22q11.2 also deleted in DiGeorge anomaly and some forms of congenital heart disease. Due to the variability of phenotype, the evaluation of the incidence of deletions has been hampered by uncertainty of diagnosis.

View Article and Find Full Text PDF