The ability of arginine-rich peptides to cross the lipid bilayer and enter cytoplasm, unlike their lysine-based analogues, is intensively studied in the context of cell-penetrating peptides. Although the experiments have not yet reconstructed their internalization mechanism, the computational studies have shown that the type or charge of lipid polar groups is one of the crucial factors in their translocation. In order to gain more detailed insight into the interaction of guanidinium (Gdm) and ammonium (NH) cations, as important building blocks in arginine and lysine amino acids, with lipid bilayers, we conducted the experimental and computational study that tackles this phenomenon.
View Article and Find Full Text PDFThe elucidation of the thermal properties of phosphatidylcholine liposomes is often based on the analysis of the thermal capacity profiles of multilamellar liposomes (MLV), which may qualitatively disagree with those of unilamellar liposomes (LUV). Experiments and interpretation of LUV liposomes is further complicated by aggregation and lamellarization of lipid bilayers in a short time period, which makes it almost impossible to distinguish the signatures of the two types of bilayers. To characterize independently MLV and LUV of 1,2-dipalmitoyl--glycero-3-phosphocholine (DPPC), the latter were prepared with the addition of small amounts of 1,2-dipalmitoyl--glycero-3-phosphatidylglycerol (DPPG) which, due to the sterical hindrance and negative charge at a given pH value, cause LUV repellence and contribute to their stability.
View Article and Find Full Text PDFNanomedicine is a booming medical field that utilises nanoparticles (NPs) for the development of medicines, medical devices, and diagnostic tools. The behaviour of NPs in vivo may be quite complex due to their interactions with biological molecules. These interactions in biological fluids result in NPs being enveloped by dynamic protein coronas, which serve as an interface between NPs and their environment (blood, cell, tissue).
View Article and Find Full Text PDFJ Trace Elem Med Biol
December 2018
The rapid development and widespread applications of nanotechnology necessitates the design towards safe nanoparticles. Surface structure is among the most important physicochemical characteristics of metallic nanoparticles affecting their mode of action in certain biological or environmental compartments. This study aimed to investigate how different surface coatings affect the cytotoxicity and cellular uptake of silver nanoparticles (AgNPs) in murine neural stem cells (mNSCs).
View Article and Find Full Text PDFThe increasing development of different nanomaterials, such as silver nanoparticles (AgNPs), and their practical use in agriculture and biotechnology has created a strong need for elucidations of biological effects and risk assessments of AgNPs in plants. This study was aimed to investigate AgNPs effects on metal uptake and their biodistribution in pepper plants as well as on morphological parameters and hormonal responses of the isoprenoid cytokinin (CK) family. In addition, the comparison of effects silver form, nanoparticles vs.
View Article and Find Full Text PDFSilver (AgNPs) and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs) are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment.
View Article and Find Full Text PDFMotivated by diverse biological and pharmacological activity of quinuclidine and oxime compounds we have synthesized and characterized novel class of surfactants, 3-hydroxyimino quinuclidinium bromides with different alkyl chains lengths (CnQNOH; n=12, 14 and 16). The incorporation of non conventional hydroxyimino quinuclidinium headgroup and variation in alkyl chain length affects hydrophilic-hydrophobic balance of surfactant molecule and thereby physicochemical properties important for its application. Therefore, newly synthesized surfactants were characterized by the combination of different experimental techniques: X-ray analysis, potentiometry, electrical conductivity, surface tension and dynamic light scattering measurements, as well as antimicrobial susceptibility tests.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2015
The proliferation of silver nanoparticle (AgNP) production and use owing to their antimicrobial properties justifies the need to examine the resulting environmental impacts. The discharge of biocidal nanoparticles to water bodies may pose a threat to aquatic species. This study evaluated the effects of citrate-coated AgNPs on the standardized test organism Daphnia magna Straus clone MBP996 by means of biochemical biomarker response.
View Article and Find Full Text PDFWith the ever growing use of nanoparticles in a broad range of industrial and consumer applications there is increasing likelihood that such nanoparticles will enter the aquatic environment and be transported through freshwater systems, eventually reaching estuarine or marine waters. Due to silver's known antimicrobial properties and widespread use of silver nanoparticles (AgNP), their environmental fate and impact is therefore of particular concern. In this context we have investigated the species-specific effects of low concentrations of 60 nm AgNP on embryonal development in Mediterranean sea urchins Arbacia lixula, Paracentrotus lividus and Sphaerechinus granularis.
View Article and Find Full Text PDFThe use of nanotechnology-based products is constantly increasing and there are concerns about the fate and effect on the aquatic environment of antimicrobial products such as silver nanoparticles. By combining different characterization techniques (asymmetric flow field-flow fractionation, single particle ICP-MS, UV-Vis) we show that it is possible to assess in detail the agglomeration process of silver nanoparticles in artificial seawater. In particular we show that the presence of alginate or humic acid differentially affects the kinetic of the agglomeration process.
View Article and Find Full Text PDFBackground: Elemental sulfur (S) persists in natural aquatic environment in a variety of forms with different size distributions from dissolved to particulate. Determination of S speciation mainly consists of the application of chromatographic and electrochemical techniques while its size determination is limited only to the application of microscopic and light scattering techniques. S biological and geochemical importance together with recent increases of S industrial applications requires the development of different analytical tools for S sizing and quantification.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2014
Understanding biocompatibility of materials and scaffolds is one of the main challenges in the field of tissue engineering and regeneration. The complex nature of cell-biomaterial interaction requires extensive preclinical functionality testing by studying specific cell responses to different biomaterial properties, from morphology and mechanics to surface characteristics at the molecular level. Despite constant improvements, a more general picture of biocompatibility is still lacking and tailormade scaffolds are not yet available.
View Article and Find Full Text PDFJ Agric Food Chem
August 2014
The impact of a cationic surfactant, dodecylammonium chloride (DDACl), on the self-assembly of sodium caseinate (SC) has been investigated by light scattering, zeta potential, and rheological measurements as well as by microscopy (transmission electron and confocal laser scanning microscopy). In SC dilute solutions concentration-dependent self-assembly proceeds through the formation of spherical associates and their aggregation into elongated structures composed of connected spheres. DDACl interacts with SC via its hydrophilic and hydrophobic groups, inducing changes in SC self-assembled structures.
View Article and Find Full Text PDFA series of cationic oligomeric surfactants (quaternary dodecyldimethylammonium ions with two, three, or four chains connected by an ethylene spacer at the headgroup level, abbreviated as dimer, trimer, and tetramer) were synthesized and characterized. The influence of the degree of oligomerization on their polymorphic and mesomorphic properties was investigated by means of X-ray diffraction, polarizing optical microscopy, thermogravimetry, and differential scanning calorimetry. All compounds display layered arrangements with interdigitated dodecyl chains.
View Article and Find Full Text PDFVarious amounts of Ovalbumin (OVA) were encapsulated into positively and negatively charged multilamellar liposomes, with the aim to investigate the entrapment efficiency in different buffers and to study their effects on the liposome size and zeta potential. Results showed that the entrapment efficiency of OVA in anionic liposomes was the same in 10 mM Phosphate Buffer (PB) as in Phosphate-Buffered Saline (PBS; PB + 0.15 M NaCl).
View Article and Find Full Text PDFMercury electrodes preconcentrate metal chalcogenide nanoparticles effectively, enabling their detection at submicromolar concentrations (as Sigma chalcogenide) by adsorptive cathodic stripping voltammetry. Understanding the unique behavior of nanoparticle analytes during preconcentration is critical for lowering detection limits and for quantification. A multistep mechanism is proposed on the basis of accumulation experiments with polydisperse copper sulfide (CuxS) nanoparticles.
View Article and Find Full Text PDFAntioxidant activity of gangliosides GM1 and GT1b in the Fenton type of reaction was investigated by EPR spectroscopy using DMPO as a spin trap. Hydroxyl radical spin adduct signal intensity was significantly reduced in the presence of gangliosides at their micellar concentrations. Mean micellar hydrodynamic diameter was not changed, whereas significant changes in negative Zeta potential values were observed as evidenced by Zetasizer Nano ZS.
View Article and Find Full Text PDFVoltammetric scans in sulfidic natural waters often reveal reduction peaks in the range -0.9 to -1.35 V versus Ag/AgCl.
View Article and Find Full Text PDF