Colloids may play an important role in the geochemical cycle of antimony (Sb). However, the controlling behaviors of colloids on Sb fate in contaminated groundwater are not available. To investigate the effects of colloids on Sb mobility, groundwater samples from Xikuangshan Sb Mine's two main aquifers (the Ds aquifer and the Dx aquifer) were successively (ultra)filtered through progressively decreasing pore sizes (0.
View Article and Find Full Text PDFIn northern Tunisia, Sidi Driss sulfide ore valorization had produced a large waste amount. The long tailings exposure period and in situ minerals interactions produced an acid mine drainage (AMD) which contributed to a strong increase in the mobility and migration of huge heavy metal (HM) quantities to the surrounding soils. In this work, the soil mineral proportions, grain sizes, physicochemical properties, SO and S contents, and Machine Learning (ML) algorithms such as the Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) models were used to predict the soil HM quantities transferred from Sidi-Driss mine drainage to surrounding soils.
View Article and Find Full Text PDFKaatialaite mineral Fe[AsO(OH)]5HO from Jáchymov, Czech Republic forms white aggregates of needle-shaped crystals with micrometric size. Its structure at ambient temperature has already been reported but hydrogen atoms could not be identified from single-crystal X-ray diffraction. An analysis using 3D electron diffraction at low temperature brings to light the hydrogen positions and the existence of hydrogen disorder.
View Article and Find Full Text PDFThe double sulfates with the general formula NaM(SO)·HO (M = Mg, Mn, Co, Ni, Cu, Zn, = 2 or 4) are being considered as materials for electrodes in sodium-based batteries or as precursors for such materials. These sulfates belong structurally to the blödite ( = 4) and kröhnkite ( = 2) family and the M cations considered in this work were Mg, Mn, Co, Ni, Cu, Zn. Using a combination of calorimetric methods, we have measured enthalpies of formation and entropies of these phases, calculated their Gibbs free energies (Δ °) of formation and evaluated their stability with respect to NaSO, simple sulfates MSO·HO, and liquid water, if appropriate.
View Article and Find Full Text PDFWildfires can be responsible for significant mercury (Hg) emissions especially in contaminated areas. Here, we investigated the Hg distribution in topsoils and vegetation samples and temperature-dependent Hg mobilization from biomass-rich topsoils collected near a copper (Cu) smelter in Tsumeb (semi-arid Namibia), where Hg-rich Cu concentrates are processed. The thermo-desorption (TD) experiments conducted on representative biomass-rich topsoils (3.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2018
Chromate is one of the major anthropogenic contaminants on Earth. is a highly chromate-resistant strain, tolerating chromate concentrations in LB medium of up to 400 mM. In response to chromate stress, forms biofilms, which are held together via extracellular DNA.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
October 2017
Parabutlerite, orthorhombic FeSO(OH)·2HO, has been reinvestigated using single-crystal X-ray diffraction. The structure of parabutlerite is commensurately modulated, with a = 20.0789 (8), b = 7.
View Article and Find Full Text PDFThe development of mycorrhized pine seedlings grown in the presence of lead was assessed in order to investigate how higher plants can tolerate lead pollution in the environment. Examination with scanning electron microscopy (SEM) revealed that Pb uptake was prominent in the roots, while a smaller amount was found in pine needles, which requires symplastic uptake and root-to-shoot transfer. Lead was concentrated in nanocrystalline aggregates attached to the cell wall and, according to elemental microanalyses, is associated with phosphorus and chlorine.
View Article and Find Full Text PDFThe mineralogical composition of mining wastes deposited in countless dumps around the world is the key factor that controls retention and release of pollutants. Here we report a multi-method data set combining mineralogical (X-ray diffraction, electron microprobe and Raman microspectrometry) and geochemical (sequential extraction and pore water analysis) methods to resolve As mobility in two 50-years-old mining waste dumps. Originally, all of the As in the mining wastes selected for the study was present as arsenopyrite and with time it has been replaced by secondary As phases.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2016
Historical slags from the past Fe and Cu-Co production were investigated in order to evaluate either their potential for utilization or their long-term environmental risk for unsupervised old smelting areas. Here, we studied ferrous slags produced during the recovery of Fe from siderite-Cu ores in Slovakia and two different types of non-ferrous slags produced during the recovery of Cu and Co from Kupferschiefer ores in Germany. The glassy character, rare occurrence of primary silicate phases, and the lack of secondary phases in Cu slags indicate their stability for a prolonged period of time.
View Article and Find Full Text PDFWe investigated the speciation and extractability of Tl in soil developed from mineralized carbonate rock. Total Tl concentrations in topsoil (0-20 cm) of 100-1000 mg/kg are observed in the most affected area, subsoil concentrations of up to 6000 mg/kg Tl in soil horizons containing weathered ore fragments. Using synchrotron-based microfocused X-ray fluorescence spectrometry (μ-XRF) and X-ray absorption spectroscopy (μ-XAS) at the Tl L3-edge, partly Tl(I)-substituted jarosite and avicennite (Tl2O3) were identified as Tl-bearing secondary minerals formed by the weathering of a Tl-As-Fe-sulfide mineralization hosted in the carbonate rock from which the soil developed.
View Article and Find Full Text PDFExtremely arsenic-rich acid mine waters have developed by weathering of native arsenic in a sulfide-poor environment on the 10th level of the Svornost mine in Jáchymov (Czech Republic). Arsenic rapidly oxidizes to arsenolite (As2O3), and there are droplets of liquid on the arsenolite crust with high As concentration (80,000-130,000 mg·L(-1)), pH close to 0, and density of 1.65 g·cm(-1).
View Article and Find Full Text PDFEnviron Sci Technol
August 2013
Hematite (α-Fe2O3) is one of the most common iron oxides and a sink for the toxic metalloid arsenic. Arsenic can be immobilized by adsorption to the hematite surface; however, the incorporation of As in hematite was never seriously considered. In our study we present evidence that, besides adsorption, the incorporation of As into the hematite crystals can be of great relevance for As immobilization.
View Article and Find Full Text PDFBiofilms can provide a number of different ecological niches for microorganisms. Here, a multispecies biofilm was studied in which pyrite-oxidizing microbes are the primary producers. Its stability allowed not only detailed fluorescence in situ hybridization (FISH)-based characterization of the microbial population in different areas of the biofilm but also to integrate these results with oxygen and pH microsensor measurements conducted before.
View Article and Find Full Text PDFThe enthalpies of formation of synthetic MgSO(4)·4H(2)O (starkeyite) and MgSO(4)·3H(2)O were obtained by solution calorimetry at T=298.15 K. The resulting enthalpies of formation from the elements are [Formula: see text] (starkeyite)=-2498.
View Article and Find Full Text PDFEnviron Sci Technol
June 2011
Hydrous ferric oxide (HFO) is an X-ray amorphous compound with a high affinity for anions under strongly or mildly acidic conditions. Because of the usually small particle size of HFO, the adsorption capacity is high and adsorption may significantly impact the thermodynamic properties of such materials. Here we show that adsorption of phosphate and arsenate stabilizes HFO by experimental determination of enthalpies of formation (by acid-solution calorimetry) and estimates of standard entropies for six phosphate- or arsenate-enriched HFO samples.
View Article and Find Full Text PDFAcidic and metal-rich waters produced by sulfide decomposition at mining sites are termed acid mine drainage (AMD). They precipitate a number of minerals, very often sulfates. The recent advances in thermodynamic properties and crystallography of these sulfates are reviewed here.
View Article and Find Full Text PDFHere we describe a novel bacterial community that is embedded in a matrix of carbohydrates and bio/geochemical products of pyrite (FeS(2)) oxidation. This community grows in stalactite-like structures--snottites--on the ceiling of an abandoned pyrite mine at pH values of 2.2-2.
View Article and Find Full Text PDFSci Total Environ
February 2009
Shooting ranges represent sites heavily polluted by Pb, Sb, Cu, Ni, and Zn, which are released during the weathering of bullets. The pristine bullets are made of a Pb-Sb core, Fe mantle, and minor amounts of Cu, Ni, and Zn in an interlayer between the core and mantle. At two selected sampling sites (Losone and Lucerne, both in Switzerland), corroding bullets were collected to determine the sinks of Sb within the weathering crust of the bullets.
View Article and Find Full Text PDFIron oxides occur ubiquitously in environmental, geological, planetary, and technological settings. They exist in a rich variety of structures and hydration states. They are commonly fine-grained (nanophase) and poorly crystalline.
View Article and Find Full Text PDFTo clarify the microscopic origin of the temperature-induced three-order-of-magnitude jump in the proton conductivity of CsH(2)PO(4) (superprotonic behavior), we have investigated its crystal structure modifications within the 25-300 degrees C temperature range under both ambient- and high-pressure conditions using synchrotron x-ray diffraction. Our high-pressure data show no indication of the thermal decomposition/polymerization at the crystal surface recently proposed as the origin of the enhanced proton conductivity [Phys. Rev.
View Article and Find Full Text PDFEnviron Sci Technol
January 2005
Acid mine drainage (AMD) contaminates surface water bodies, groundwater, soils, and sediments at innumerable locations around the world. AMD usually originates by weathering of pyrite (FeS2) and is rich in Fe and sulfate. In this study, we investigated speciation of FeII, FeIII, and SO4 in acid waters by Fourier transform infrared and X-ray absorption spectroscopy.
View Article and Find Full Text PDF