Lattice thermal conductivity ( ) is of great importance in basic sciences and in energy conversion applications. However, low- crystalline materials have only been obtained from heavy elements, which typically exhibit poor stability and possible toxicity. Thus, low- materials composed of light elements should be explored.
View Article and Find Full Text PDFInorganic plastic semiconductors play a crucial role in the realm of flexible electronics. In this study, we present a cost-effective plastic thermoelectric semimetal magnesium bismuthide (α-MgBi), exhibiting remarkable thermoelectric performance. Bulk single-crystalline α-MgBi exhibits considerable plastic deformation at room temperature, allowing for the fabrication of intricate shapes such as the letters "SUSTECH" and a flexible chain.
View Article and Find Full Text PDFThe Li/Mn ordered structure of lithium-rich (LR) cathodes leads to the heterogeneous LiMnO and LiTMO components, readily triggering structural degeneration and performance degradation in long-term cycling. However, the lack of guiding principles for promoting cation disorder within the transition metal (TM) layers has posed a persistent challenge in designing homogeneous layered LR cathodes. Herein, the (Li + Mn) content in the TM layer as a criterion for the design of cation-disordered layered LR cathodes is proposed.
View Article and Find Full Text PDFCrystalline solids exhibiting inherently low lattice thermal conductivity ( ) are of great importance in applications such as thermoelectrics and thermal barrier coatings. However, cannot be arbitrarily low and is limited by the minimum thermal conductivity related to phonon dispersions. In this work, we report the liquid-like thermal transport in a well-ordered crystalline CsAgTe, which exhibits an extremely low value of ∼0.
View Article and Find Full Text PDFAfter charging to a high state-of-charge (SoC), layered oxide cathodes exhibit high capacities but suffer from gliding-induced structural distortions caused by deep Li depletion within alkali metal (AM) layers, especially for high-nickel candidates. In this study, we identify the essential structure of the detrimental H3 phase formed at high SoC to be an intergrowth structure characterized by random sequences of the O3 and O1 slabs, where the O3 slabs represent Li-rich layers and the O1 slabs denote Li-depleted (or empty) layers that glide from the O3 slabs. Moreover, we adopt two doping strategies targeting different doping sites to eliminate the formation of Li-vacant O1 slabs.
View Article and Find Full Text PDFAmorphous carbon holds great promise as anode material for sodium-ion batteries due to its cost-effectiveness and good performance. However, its sodium storage mechanism, particularly the insertion process and origin of plateau capacity, remains controversial. Here, an extended adsorption/insertion-filling sodium storage mechanism is proposed using petroleum coke-derived amorphous carbon as a multi-microcrystalline model.
View Article and Find Full Text PDFTopological spin textures are of great significance in magnetic information storage and spintronics due to their high storage density and low drive current. In this work, the transformation of magnetic configuration from chaotic labyrinth domains to uniform stripe domains was observed in MnFeCoGe magnets. This change occurs due to the noncollinear magnetic structure switching to a uniaxial ferromagnetic structure with increasing Co content, as identified by neutron diffraction results and Lorentz transmission electron microscopy (L-TEM).
View Article and Find Full Text PDFAir sensitivity remains a substantial barrier to the commercialization of sodium (Na)-layered oxides (NLOs). This problem has puzzled the community for decades because of the complexity of interactions between air components and their impact on both bulk and surfaces of NLOs. We show here that water vapor plays a pivotal role in initiating destructive acid and oxidative degradations of NLOs only when coupled with carbon dioxide or oxygen, respectively.
View Article and Find Full Text PDFDiversity, a hallmark of G protein-coupled receptor (GPCR) signaling, partly stems from alternative splicing of a single gene generating more than one isoform for a receptor. Additionally, receptor responses to ligands can be attenuated by desensitization upon prolonged or repeated ligand exposure. Both phenomena have been demonstrated and exemplified by the deuterostome tachykinin signaling system, although the role of phosphorylation in desensitization remains a subject of debate.
View Article and Find Full Text PDFThe thermal properties, microstructure, and mechanical properties of Fe-18Mn-3Ti (wt%) were investigated, focusing on the effects of different heat-treatment processes. Results revealed that the 450 °C warm-rolling sample (450 WR) exhibited promising mechanical properties. Specifically, this sample displayed a yield strength of 988 MPa, an ultimate tensile strength of 1052 MPa, and total elongation of 15.
View Article and Find Full Text PDFUnderstanding the interfacial hydrogen evolution reaction (HER) is crucial to regulate the electrochemical behavior in aqueous zinc batteries. However, the mechanism of HER related to solvation chemistry remains elusive, especially the time-dependent dynamic evolution of the hydrogen bond (H-bond) under an electric field. Herein, we combine in situ spectroscopy with molecular dynamics simulation to unravel the dynamic evolution of the interfacial solvation structure.
View Article and Find Full Text PDFDeveloping sacrificial cathode prelithiation technology to compensate for active lithium loss is vital for improving the energy density of lithium-ion battery full-cells. LiCO owns high theoretical specific capacity, superior air stability, but poor conductivity as an insulator, acting as a promising but challenging prelithiation agent candidate. Herein, extracting a trace amount of Co from LiCoO (LCO), a lattice engineering is developed through substituting Li sites with Co and inducing Li defects to obtain a composite structure consisting of (LiCo▫)CO and ball milled LiCoO (Co-LiCO@LCO).
View Article and Find Full Text PDFNeuropeptides with the C-terminal Wamide (Trp-NH) are one of the last common ancestors of peptide families of eumetazoans and play various physiological roles. In this study, we sought to characterize the ancient Wamide peptides signaling systems in the marine mollusk , i.e.
View Article and Find Full Text PDFLithium-rich manganese-based layered oxides (LRM) have garnered considerable attention as cathode materials due to their superior performance. However, the inherent structural degradation and obstruction of ion transport during cycling lead to capacity and voltage decay, impeding their practical applications. Herein, an Sb-doped LRM material with local spinel phase is reported, which has good compatibility with the layered structure and provides 3D Li diffusion channels to accelerate Li transport.
View Article and Find Full Text PDFNeuropeptides are ubiquitous intercellular signaling molecules in the CNS and play diverse roles in modulating physiological functions by acting on specific G-protein coupled receptors (GPCRs). Among them, the elevenin signaling system is now believed to be present primarily in protostomes. Although elevenin was first identified from the L11 neuron of the abdominal ganglion in mollusc Aplysia californica, no receptors have been described in Aplysia, nor in any other molluscs.
View Article and Find Full Text PDFElement doping/substitution has been recognized as an effective strategy to enhance the structural stability of layered cathodes. However, abundant substitution studies not only lack a clear identification of the substitution sites in the material lattice, but the rigid interpretation of the transition metal (TM)-O covalent theory is also not sufficiently convincing, resulting in the doping/substitution proposals being dragged into design blindness. In this work, taking LiNiMnO as a prototype, the intense correlation between the "disordered degree" (Li/Ni mixing) and interface-structure stability (e.
View Article and Find Full Text PDFAs a potential substitute for lithium-ion battery, sodium-ion batteries (SIBs) have attracted a tremendous amount of attention due to their advantages in terms of cost, safety and sustainability. Nevertheless, further improvement of the energy density of cathode materials in SIBs remains challenging and requires the activation of anion redox reaction (ARR) activity to provide additional capacity. Herein, we report a high-performance Mn-based sodium oxide cathode material, NaMgZnMnO (NMZMO), with synergistic activation of ARR by cosubstitution.
View Article and Find Full Text PDFFront Cardiovasc Med
August 2022
As a result of ongoing breakthroughs in cancer therapy, cancer patients' survival rates have grown considerably. However, cardiotoxicity has emerged as the most dangerous toxic side effect of cancer treatment, negatively impacting cancer patients' prognosis. In recent years, the link between non-coding RNAs (ncRNAs) and cancer therapy-induced cardiotoxicity has received much attention and investigation.
View Article and Find Full Text PDFNeuropeptides, as pervasive intercellular signaling molecules in the CNS, modulate a variety of behavioral systems in both protostomes and deuterostomes. Allatostatins are neuropeptides in arthropods that inhibit the biosynthesis of juvenile hormones. Based on amino acid sequences, they are divided into three different types in arthropods: allatostatin A, allatostatin B, allatostatin C.
View Article and Find Full Text PDFOxid Med Cell Longev
February 2022
Ischemia-reperfusion (I/R) is a pathological process that occurs in many organs and diseases. Reperfusion, recovery of blood flow, and reoxygenation often lead to reperfusion injury. Drug therapy and early reperfusion therapy can reduce tissue injury and cell necrosis caused by ischemia, leading to irreversible I/R injury.
View Article and Find Full Text PDFThe perovskite structure of manganate yields a series of intriguing physical properties. Based on the results of first-principles calculations, strontium manganate appears to undergo a magnetic phase transition and a metal-insulator transition-from antiferromagnetic insulator to ferromagnetic metal and then to ferromagnetic insulator-under isotropic volume expansion combined with oxygen octahedral distortions. Interestingly, the results show that increasing the Mn-O bond length and adding rotation of the oxygen octahedra can soften the breathing distortion and account for the insulator phase.
View Article and Find Full Text PDF