Lead-free double perovskites offer enhanced stability and lower toxicity compared to their lead-based counterparts. Dual B-site cations can introduce elemental and structural diversity into double perovskite materials, enabling fine-tuning of the optical properties. However, the study of the nonlinear optical (NLO) properties of lead-free double perovskites is still nascent, hindering their relevant potential applications.
View Article and Find Full Text PDFAmong various chiral semiconductor materials, chiral two-dimensional (2D)/three-dimensional (3D) composite perovskites (CPs) offer the benefits of strong interface asymmetry and energy transfer between 2D and 3D phases, making the chiral CPs promising for spintronic devices. Therefore, understanding their spintronic properties will be greatly important for expanding their relevant applications. In this work, we synthesized one pair of chiral 2D/3D CP films.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2023
Due to the pronounced anisotropic response to circularly polarized light, chiral hybrid organic-inorganic metal halides have been regarded as promising candidates for the application in nonlinear chiroptics, especially for the second-harmonic generation circular dichroism (SHG-CD) effect. However, designing novel lead-free chiral hybrid metal halides with large anisotropy factors and high laser-induced damage thresholds (LDT) of SHG-CD remains challenging. Herein, we develop the first chiral hybrid germanium halide, (R/S-NEA) Ge I ⋅H O (R/S-NGI), and systematically investigated its linear and nonlinear chiroptical properties.
View Article and Find Full Text PDFUnderstanding the chiral mechanism of chiral hybrid perovskites is a prerequisite for developing relevant chiroptoelectronic applications. Although conventional circular dichroism (CD) spectroscopy can be used to characterize chirality in chiral perovskites, it has a low signal-to-noise ratio and can provide only information about macroscopic chirality. Herein, with the aim of revealing the microscopic chiral mechanism in chiral perovskites, we utilize a spacer cation alloying strategy to construct chiral two-dimensional perovskites.
View Article and Find Full Text PDFQuasi-2D Ruddlesden-Popper-type perovskites (RPPs) exhibit excellent nonlinear optical properties due to their multiple quantum well structures with large exciton binding energy. Herein, we introduce chiral organic molecules into RPPs and investigate their optical properties. It is found that the chiral RPPs possess effective circular dichroism in the ultraviolet to visible wavelengths.
View Article and Find Full Text PDFChiral transition metal oxides (TMOs) are widely used in various optoelectronic devices. However, the currently poor understanding of how the optical activities of TMOs can be regulated considerably hinders their applications. We have synthesized a series of chiral TMO nanoparticles (NPs), , MoO ( = 2, 2.
View Article and Find Full Text PDFThe successful implementation of perovskite light-emitting diodes (PeLEDs) in advanced displays and lighting has proven to be challenging because of the inferior performance of blue devices. Here, we point out that a strained system would lead to the quasi-degenerate energy state to enhance the excited-state transition due to the formation of double-polarized transition channel. The tensile strained structure also brings about a synergetic control of the carrier dynamics in virtue of lattice structure deformation and reduced dimensional phase regulation to promote carrier population in large bandgap domains and to realize near-unit energy transfer from the large bandgap phases to the emitter phases.
View Article and Find Full Text PDFPeimine, a bioactive substance isolated from Chinese medicine Fritillaria, can potentially suppress pulmonary fibrosis (PF); however, its therapeutic mechanism remains unclear. Recent evidence suggests the participation of M2-type macrophages in the pathogenesis of PF. The present study aimed to investigate the effect of peimine on a bleomycin (BLM)-induced PF rat model and the underlying mechanism of this effect.
View Article and Find Full Text PDFLead-free perovskite materials with good stability are promising for various applications. In order to explore their application in optoelectronic devices, it is essential to investigate their fundamental optical properties. In this work, we have synthesized a CsMnBr single crystal (SC) with red emission at ∼621 nm and studied their optical properties.
View Article and Find Full Text PDFSubcellular machinery of NLRP3 is essential for inflammasome assembly and activation. However, the stepwise process and mechanistic basis of NLRP3 engagement with organelles remain unclear. Herein, we demonstrated glycogen synthase kinase 3β (GSK3β) as a molecular determinant for the spatiotemporal dynamics of NLRP3 inflammasome activation.
View Article and Find Full Text PDFIt has been demonstrated that the alloyed perovskite nanocrystals (NCs) with a small amount of Cd element may passivate the inherent halide vacancies in perovskite NCs and improve their stability. However, the study of the optical properties of such alloyed perovskite NCs still remains essentially untouched, which will seriously hinder relevant applications. Herein, using different amounts of CdBr as an alloyed metal precursor, a series of CsPbCdBr NCs ( = 1, 0.
View Article and Find Full Text PDFStructural engineering permits the introduction of chirality into organic-inorganic hybrid metal halides (HMHs), which creates a promising and exclusive material for applications in various optoelectronics. However, the optical activity regulation of chiral HMHs remains largely unexplored. In this work, we have synthesized two pairs of lead-free chiral HMHs with a zero-dimensional tetrahedral arrangement, i.
View Article and Find Full Text PDFBackground And Purpose: The M2 polarization of macrophages substantially contributes to the progression of pulmonary fibrosis (PF). Effective-compound combination (ECC), which is composed of isoliquiritigenin, icariin, nobiletin, peimine, and paeoniflorin, ameliorated bleomycin-induced PF in rats. Hence, we investigated the anti-PF mechanism of ECC with a focus on the suppression of M2 polarization in macrophages in vivo and in vitro.
View Article and Find Full Text PDFN-methyladenosine (mA) RNA modification is a fundamental determinant of mRNA metabolism, but its role in innate immunity-driven non-alcoholic fatty liver disease (NAFLD) and obesity is not known. Here, we show that myeloid lineage-restricted deletion of the mA "writer" protein Methyltransferase Like 3 (METTL3) prevents age-related and diet-induced development of NAFLD and obesity in mice with improved inflammatory and metabolic phenotypes. Mechanistically, loss of METTL3 results in the differential expression of multiple mRNA transcripts marked with mA, with a notable increase of DNA Damage Inducible Transcript 4 (DDIT4) mRNA level.
View Article and Find Full Text PDFA novel single-shot ultrafast all-optical photography with raster principle (OPR) that can capture real-time imaging of ultrafast phenomena is proposed and demonstrated. It consists of a sequentially timed module (STM), spectral-shaping module (SSM), and raster framing camera (RFC). STM and SSM are used for linearly encoding frequency-time mapping and system calibration, respectively.
View Article and Find Full Text PDFNonlinear optical effects in layered two-dimensional transition metal chalcogenides have been extensively explored recently because of the promising prospect of the nonlinear optical effects for various optoelectronic applications. However, these materials possess sizable bandgaps ranging from visible to ultraviolet region, so the investigation of narrow-bandgap materials remains deficient. Here, we report our comprehensive study on the nonlinear optical processes in palladium diselenide (PdSe) that has a near-infrared bandgap.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2021
Hybrid organic-inorganic metal halides have emerged as highly promising materials for a wide range of applications in optoelectronics. Incorporating chiral organic molecules into metal halides enables the extension of their unique optical and electronic properties to chiral optics. By using chiral (R)- or (S)-methylbenzylamine (R-/S-MBA) as the organic component, we synthesized chiral hybrid copper halides, (R-/S-MBA) CuCl , and investigated their optical activity.
View Article and Find Full Text PDFSkeletal muscle dysfunction, a striking systemic comorbidity of chronic obstructive pulmonary disease (COPD), is associated with declines in activities of daily living, reductions in health status and prognosis, and increases in mortality. Bufei Jianpi formula (BJF), a traditional Chinese herbal formulation, has been shown to improve skeletal muscle tension and tolerance via inhibition of cellular apoptosis in COPD rat models. This study aimed to investigate the mechanisms by which BJF regulates the adenosine monophosphate-activated protein kinase (AMPK) pathway to improve mitochondrial function and to suppress mitophagy in skeletal muscle cells.
View Article and Find Full Text PDFAlthough the production of near-infrared (NIR)-absorbing organic polymers with an excellent nonlinear optical (NLO) response is vital for various optoelectronic devices and photodynamic therapy, the molecular design and relevant photophysical investigation still remain challenging. In this work, large NLO activity is observed for an NIR-absorbing bithiophene-based polymer with a unique head-to-head linkage in the NIR region. The saturable absorption coefficient and modulation depth of the polymer are determined as ∼-3.
View Article and Find Full Text PDFFor next-generation Internet-of-Everything applications, for example, artificial-neural-network image sensors, artificial retina, visible light communication, on-chip light interconnection, and flexible devices, etc., high-performance microscale photodetectors are in urgent demands. 2D material (2DM) photodetectors have been researched and demonstrated impressive performances.
View Article and Find Full Text PDFAll-inorganic lead halides, including CsPbX (X = Cl, Br, I), have become important candidate materials in the field of optoelectronics. However, the inherent toxicity of metal lead and poor material stability have hindered further applications of traditional metal halides, CsPbX. Therefore, copper(i)-based ternary metal halides are expected to become promising substitutes for traditional metal halides because of their nontoxicity, excellent optical properties and good stability under ambient conditions.
View Article and Find Full Text PDFAll-inorganic perovskite (CsPbX, X = Cl, Br, I) nanorods (NRs) not only retain their inherent advantages such as a high photoluminescence quantum yield and broad wavelength tunability but also exhibit superior photophysical properties including their extremely strong multiphoton absorption (MPA). However, the spectral dynamics and MPA properties of CsPbX NRs have not been fully investigated. Here, we report comprehensive comparison studies on the femtosecond spectral dynamical properties of CsPb(BrCl), CsPbBr, and CsPb(BrI) NRs, including their influences on their hot-carrier cooling, biexciton lifetime, and biexciton binding energy.
View Article and Find Full Text PDFWe constructed an intelligent cloud lab that integrates lab automation with cloud servers and artificial intelligence (AI) to detect chirality in perovskites. Driven by the materials acceleration operating system in cloud (MAOSIC) platform, on-demand experimental design by remote users was enabled in this cloud lab. By employing artificial intelligence of things (AIoT) technology, synthesis, characterization, and parameter optimization can be autonomously achieved.
View Article and Find Full Text PDFCu-doped InP (Cu:InP) and InP/ZnSe nanocrystals (NCs) with near-infrared-I (NIR-I) emission were prepared and characterized. Femtosecond transient absorption spectra revealed that the epitaxial growth of a ZnSe diffusion barrier onto the Cu:InP core can amplify its exciton-dopant coupling strength, with the energy transfer times of $\sim{220}\;{\rm ps}$∼220ps for Cu:InP NCs and $\sim{183}\;{\rm ps}$∼183ps for Cu:InP/ZnSe NCs. Importantly, the Cu:InP/ZnSe NCs exhibit much larger two- and three-photon absorption cross sections, reaching $\sim{10162}$∼10162 GM at 1030 nm and $\sim{1.
View Article and Find Full Text PDF