Nanomaterials (Basel)
November 2022
Levulinic esters, synthesized by the esterification of biomass-derived levulinic acid with various alcohols, is an important chemical that plays an essential role in the fields of biomass fuel additives, organic synthesis, and high value-added products. In the present work, the catalytic esterification of levulinic acid with n-butyl alcohol was selected as a typical model reaction to investigate the catalytic performance of an inexpensive commercial catalyst, titanium oxide nanoparticles. The influences of reaction time, reaction temperature, and catalyst loading on the conversion of levulinic acid to n-butyl levulinate were systematically examined through single-factor experiments.
View Article and Find Full Text PDFDeveloping a rapid and reliable method for measuring the photoreactivity of TiO pigments is of great importance for industrial application. The photoactivity of industrial TiO pigments were evaluated via the photodegradation of a model azo dye, methyl orange (MO), in the present work. The TiO pigments were characterized by Fourier-transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-vis) spectroscopy, scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy.
View Article and Find Full Text PDFThe development of efficient heterogeneous catalytic system to convert plentiful biomass to renewable bio-chemicals is urgent need. Titanate nanotubes-based materials obtained from hydrothermal treatment have been reported as low-cost and efficient catalytic materials in chemical syntheses for bio-based chemicals production with interesting catalytic performance. This mini-review expressly revealed the significance and potential of using titanate nanotubes based material as sustainable and environmentally benign solid catalysts/supports for synthesis of various bio-based chemicals, including glycerol-derived solketal, jet fuel range alkanes precursors, biomass-derived esters, aldehydes, aromatic compounds and so on.
View Article and Find Full Text PDFThe titania nanotubes-bonded sulfamic acid (TNTs-NHSOH) catalyst was designed and successfully fabricated by the post-synthesis modification method. The as-prepared catalyst was characterized by a variety of characterization techniques, including Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, and thermogravimetry-differential thermal gravimetry (TG-DTG). The crystal structure of the TNTs still maintained during the modification process.
View Article and Find Full Text PDF