We report a method for synthesizing single-molecule magnets through a single-crystal to single-crystal transformation. This process yields two single-molecule magnets with similar triangular Dy cores but distinct solvents and space groups achieved solvent exchange. Magnetic properties reveal that both Dy molecules exhibit similar toroidal moments but manifest diverse multiple magnetization dynamic behaviors owing to the spin-lattice coupling influence from different solvent molecules.
View Article and Find Full Text PDFThe ordering of polar hydrogen bonds may break space inversion symmetry and induce ferroelectricity or antiferroelectricity. This process is usually immune to external magnetic fields so that magnetic control of hydrogen bonds is very challenging. Here we demonstrate that the ordering of hydrogen bonds in the metal-organic frameworks [(CH_{3})_{2}NH_{2}]M(HCOO)_{3} (M=Fe, Co) can be manipulated by applying magnetic fields.
View Article and Find Full Text PDFThe metal-organic framework [(CH)NH]Ni(HCOO) (DMA-Ni) has an ABX perovskite-like structure. At T ~ 181 K, DMA-Ni displays a first-order ferroelectric transition, which is triggered by the disorder-order transition of hydrogen bonds. In addition, this compound exhibits a spin-canted antiferromagnetic order below T ~ 37.
View Article and Find Full Text PDFThe coexistence and coupling between magnetization and electric polarization in multiferroic materials provide extra degrees of freedom for creating next-generation memory devices. A variety of concepts of multiferroic or magnetoelectric memories have been proposed and explored in the past decade. Here we propose a new principle to realize a multilevel nonvolatile memory based on the multiple states of the magnetoelectric coefficient (α) of multiferroics.
View Article and Find Full Text PDFTbMnO3 is an important multiferroic material with strong coupling between magnetic and ferroelectric orderings. Incommensurate magnetic ordering is suggested to be vital for this coupling in TbMnO3 , which can be modified by doping at the site of Tb and/or Mn. Our study shows that a self-doped solid solution Tb1-x Mny MnO3 (y≤x) can be formed with Mn doped into the site of Tb of TbMnO3 .
View Article and Find Full Text PDFA resonant quantum magnetoelectric coupling effect has been demonstrated in the multiferroic metal-organic framework of [(CH3)2NH2]Fe(HCOO)3. This material shows a coexistence of a spin-canted antiferromagnetic order and ferroelectricity as well as clear magnetoelectric coupling below TN ≈ 19 K. In addition, a component of single-ion quantum magnets develops below ∼ 8 K because of an intrinsic magnetic phase separation.
View Article and Find Full Text PDFResonant quantum tunneling of magnetization has been observed in a hybrid metal-organic framework where an intrinsic magnetic phase separation leads to the coexistence of long-range canted antiferromagnetic order and isolated single-ion quantum magnets. This unusual magnetic phenomenon is well interpreted based on a selective long-distance superexchange model in which the exchange interaction between transition metal ions through an organic linker depends on the position of hydrogen bonds. Our work not only extends the resonant quantum tunneling of magnetization to a new class of materials but also evokes the important role of hydrogen bonding in organic magnetism.
View Article and Find Full Text PDF