αs1-Casein (αs1-CN) is the major allergen in cow milk; however, the understanding of its conformational epitopes remains limited due to the absence of a well-defined three-dimensional structure, which has impeded efforts to effectively reduce its antigenicity. This study employed molecular dynamics simulations (MD), ELISA, cell assays and peptidomes analysis to investigate the critical conformational epitopes of αs1-Casein. MD and immunological analyses identified a dominant conformational epitope encompassing the regions S55-E75 & Y154-T174 & F179-W199, which exhibited strong binding affinity to IgE and triggered the releasing of β-hexosaminidase, histamine and IL-6 in KU812 cells, thereby inducing allergic responses.
View Article and Find Full Text PDFCow milk protein allergy (CMPA) induced by casein poses major health challenges that hinders the consumption of milk-based formulas. In this study, a novel sequential enzymatic hydrolysis catalysed by chymosin and papain was proposed to reduce casein antigenicity. Its effects on reducing casein antigenicity, structural properties and peptide profiles were evaluated by ELISA, multispectral techniques and peptidome analysis.
View Article and Find Full Text PDFαs1-Casein (αs1-CN) is a major cow milk allergen, while the tertiary structure of αs1-CN and conformational epitopes of αs1-CN have not been clarified. Here, a reasonable three-dimensional structure of αs1-CN was established using ab initio methods, and hot-spot residues and epitopes were investigated by combining molecular dynamics simulation, peptides synthesis, and ELISA. Obtained results demonstrated that the binding mechanism between αs1-CN and IgG was located on three main regions: a helical structure zone (E77-Q97), the flexible loop zone (Y154-T174), and a flexible C-terminal (N190-L198), mainly connecting via hydrogen bond and ionic bonds.
View Article and Find Full Text PDFThe clinical use of glycopeptide antibiotic vancomycin is usually accompanied by nephrotoxicity, limiting its application and therapeutic efficiency. The aim of this study was to investigate the protection of DHA-enriched phosphatidylcholine (DHA-PC) against nephrotoxicity using a model of vancomycin-induced male BALB/c mice with renal injury by measuring death curves, histological changes, and renal function indexes. The addition of DHA in DHA and DHA-PC groups were 300 mg/kg per day on the basis of human intake level in our study.
View Article and Find Full Text PDF