Drug resistance is a major obstacle to the successful treatment of cancer. The role of the miR-106b-25 cluster in drug resistance of haematologic malignancies has not yet been elucidated. Here, we show that the miR-106b-25 cluster mediates resistance to therapeutic agents with structural and mechanistic dissimilarity in vitro and in vivo.
View Article and Find Full Text PDFThe V617F mutation in Janus kinase 2 is considered one of the driver mutations leading to Philadelphia-negative myeloproliferative neoplasms (MPNs). Concurrent JAK2 and ASXL1 mutations accelerate the progression of myelofibrosis in patients with MPNs. Few therapies are currently available for patients with these two mutations.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is an aggressive cancer of myeloid cells with high levels of heterogeneity and great variability in prognostic behaviors. Cytogenetic abnormalities and genetic mutations have been widely used in the prognostic stratification of AML to assign patients into different risk categories. Nevertheless, nearly half of AML patients assigned to intermediate risk need more precise prognostic schemes.
View Article and Find Full Text PDFAdditional sex combs-like 1 (ASXL1) is frequently mutated in a variety of myeloid malignancies, resulting in expression of a C-terminal-truncated ASXL1 protein that confers gain of function on the ASXL1-BAP1 deubiquitinase (DUB) complex. Several studies have reported that hyperactivity of BRCA-1-associated protein 1 (BAP1) in deubiquitinating mono-ubiquitinated histone H2AK119 is one of the critical molecular mechanisms in ASXL1 mutation-driven myeloid malignancies in mice. In this study, we found that human haematopoietic stem and progenitor cells (HSPCs) overexpressing truncated ASXL1 (ASXL1) developed an MDS-like phenotype similar to that induced by overexpression of BAP1.
View Article and Find Full Text PDF