Publications by authors named "Junyue Zheng"

The role of insect UDP-glycosyltransferases (UGTs) in the detoxification of insecticides has rarely been reported. A UGT gene was previously found overexpressed in a fenvalerate-resistant strain of . Herein, was cloned, and its involvement in insecticide detoxification was investigated.

View Article and Find Full Text PDF

Transcription factors play an important role in regulating the expression of detoxification genes (e.g. P450s) that confer insecticide resistance.

View Article and Find Full Text PDF

Insect cuticular protein (ICP) plays an important role in insect growth and development. However, research on the role of ICP in insecticide resistance is very limited. In this study, insect cuticular protein genes LCP17 and SgAbd5 were cloned and characterized in Helicoverpa armigera based on previous transcriptome data.

View Article and Find Full Text PDF

As we known, inducibility is an important feature of P450 genes. Previous studies indicated that CYP6B7 could be induced and involved in fenvalerate detoxification in Helicoverpa armigera. However, the regulatory mechanism of CYP6B7 induced by fenvalerate is still unclear.

View Article and Find Full Text PDF

The expression of many detoxification genes can be regulated by CncC pathway and contributes to insecticide tolerance in insects. Our previous study has demonstrated that the transcripts of CncC and cytochrome P450s (CYP9A14, CYP6AE11) were significantly up-regulated after different insecticides treatment in Helicoverpa armigera. Further study indicated that HO, GSH, and MDA contents and antioxidant enzyme activities of H.

View Article and Find Full Text PDF

The CncC pathway regulates the expression of multiple detoxification genes and contributes to the detoxification and antioxidation in insects. Many studies have focused on the impacts of plant allelochemicals on the CncC pathway, whereas studies on the effects of pesticides on key genes involved in this pathway are very limited. In this study, the effects of different types of commonly used insecticides on the transcripts of CncC, Keap1, and Maf and multiple detoxification genes of Helicoverpa armigera were evaluated using real-time quantitative polymerase chain reaction.

View Article and Find Full Text PDF

Cytochrome P450 has previously been proved to be associated with fenvalerate-resistance in . Here, how is regulated and involved in the resistance of is studied. Seven base differences (M1-M7) were found in promoter between a fenvalerate-resistant (HDTJFR) and a susceptible (HDTJ) strain of .

View Article and Find Full Text PDF

Previous studies have demonstrated that sublethal metamifop exposures induce hepatic lipid metabolism disorder in zebrafish. Whether metamifop will cause adverse effects in zebrafish gut is unknown. In the present study, effects of metamifop on gut heath of zebrafish were investigated after sublethal concentration (0.

View Article and Find Full Text PDF

Difenoconazole (DCZ) is a triazole fungicide that negatively affects aquatic organisms and humans. However, data regarding the reproductive toxicity of DCZ are insufficient. In this study, we used zebrafish (from 2 h post-fertilization [hpf] to adulthood) as a model to evaluate whether DCZ at environmentally relevant concentrations (0.

View Article and Find Full Text PDF

Cytochrome P450-mediated detoxification plays an important role in the development of insecticide resistance. Previous studies have shown that cytochrome P450 CYP6B7 was induced by fenvalerate and involved in fenvalerate detoxification in Helicoverpa armigera. However, the transcriptional regulation of CYP6B7 induced by fenvalerate remains unclear.

View Article and Find Full Text PDF

Metamifop (MET) is an effective herbicide that has been extensively used in paddy fields. Previous research demonstrated that MET was highly toxic to zebrafish embryos, and this threat has caused great concern; moreover, 0.40 mg/L MET elevated the hepatosomatic index (HSI) in adult zebrafish without lethal effect after 21 d of exposure.

View Article and Find Full Text PDF

Tralopyril (TP), an antifouling biocide, is widely used to prevent heavy biofouling, and can have potential risks to aquatic organisms. In this study, the effect of TP on locomotor activity and related mechanisms were evaluated in zebrafish (Danio rerio) larvae. TP significantly reduced locomotor activity after 168 -h exposure.

View Article and Find Full Text PDF

Tralopyril (TP), an antifouling biocide, is widely used to prevent heavy biofouling, and can have potential risks to aquatic organisms. However, there is little information available on the toxicity of tralopyril to aquatic organisms. In this study, the effect of TP on carbohydrate and lipid metabolism, and related mechanisms were evaluated in zebrafish (Danio rerio) larvae.

View Article and Find Full Text PDF

Chlorfenapyr is widely used as an insecticide/miticide. Tralopyril, the active metabolite of chlorfenapyr, is used as an antifouling biocide in antifouling systems, and negatively affects aquatic environments. However, it is unclear whether tralopyril is a metabolite of chlorfenapyr in aquatic vertebrates, and there is little data on the bioaccumulation and toxicity of chlorfenapyr to aquatic vertebrates.

View Article and Find Full Text PDF

Tralopyril, an antifouling biocide, widely used in antifouling systems to prevent underwater equipment from biological contamination, which can pose a potential risk to aquatic organisms and human health. However, there is little information available on the toxicity of tralopyril to aquatic organisms. Herein, zebrafish (Danio rerio) were used to investigate the toxicity mechanisms of tralopyril and a series of developmental indicators, thyroid hormones, gene expression and metabolomics were measured.

View Article and Find Full Text PDF