Abscisic acid (ABA) is a crucial plant hormone that plays a decisive role in regulating seed and fruit development and is becoming increasingly important in agricultural applications. This article delves into ABA's regulatory functions in plant growth, particularly during the stages of seed and fruit development. In the seed phase, elevated ABA levels help maintain seed dormancy, aiding seed survival under unfavorable conditions.
View Article and Find Full Text PDFAbscisic acid (ABA)-based chemically induced proximity (CIP) is primarily mediated by the interaction of the ABA receptor pyrabactin resistance 1-like 1 (PYL1) and the 2C-type protein phosphatase ABI1, which confers ABA-induced proximity to their fusion proteins, and offers precise temporal control of a wide array of biological processes. However, broad application of ABA-based CIP has been limited by ABA response intensity. In this study, we demonstrated that ABA-induced interaction between another ABA receptor pyrabactin resistance 1 (PYR1) and ABI1 exhibited higher ABA response intensity than that between PYL1 and ABI1 in HEK293T cells.
View Article and Find Full Text PDFBackground: Gray mold, caused by , is one of the major fungal diseases in agriculture. Biological methods are preferred over chemical fungicides to control gray mold since they are less toxic to the environment and could induce the resistance to pathogens in plants. In this work, we try to understand if ginseng defense to could be induced by fungal hypovirulent strain △.
View Article and Find Full Text PDFNucleosome is the basic subunit of chromatin, consisting of approximately 147bp DNA wrapped around a histone octamer, containing two copies of H2A, H2B, H3 and H4. A linker histone H1 can bind nucleosomes through its conserved GH1 domain, which may promote chromatin folding into higher-order structures. Therefore, the complexity of histones act importantly for specifying chromatin and gene activities.
View Article and Find Full Text PDFMeyer is one of the most valuable plants and is widely used in China, while ginseng anthracnose is one of the most destructive diseases. could infect ginseng leaves and stems and causes serious anthracnose disease, but its mechanism is still unknown. Here, transcriptome and metabolism analyses of the host leaves were conducted to investigate the ginseng defense response affected by .
View Article and Find Full Text PDFVegetative phase change in plants is regulated by a gradual decline in the level of miR156 and a corresponding increase in the expression of its targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes. Gibberellin (GA), jasmonic acid (JA), and cytokinin (CK) regulate vegetative phase change by affecting genes in the miR156-SPL pathway. However, whether other phytohormones play a role in vegetative phase change remains unknown.
View Article and Find Full Text PDFThe reduction in blueberry harvest due to pathogen infection was reported to reach 80%. Essential oil (EO) can provide a new way to preserve blueberry. Here, in search for plants volatiles with preservation ability, a novel device was designed for the screening of aromatic plants led to the discovery of hit plant Monarda didyma L.
View Article and Find Full Text PDFBackground: Auxin responsive factor (ARF) family is one of core components in auxin signalling pathway, which governs diverse developmental processes and stress responses. Blueberry is an economically important berry-bearing crop and prefers to acidic soil. However, the understandings of ARF family has not yet been reported in blueberry.
View Article and Find Full Text PDFInt J Mol Sci
March 2022
In eukaryotes, the nucleus is the regulatory center of cytogenetics and metabolism, and it is critical for fundamental biological processes, including DNA replication and transcription, protein synthesis, and biological macromolecule transportation. The eukaryotic nucleus is surrounded by a lipid bilayer called the nuclear envelope (NE), which creates a microenvironment for sophisticated cellular processes. The NE is perforated by the nuclear pore complex (NPC), which is the channel for biological macromolecule bi-directional transport between the nucleus and cytoplasm.
View Article and Find Full Text PDFTranscriptome analysis of maize embryogenic callus and somatic embryos reveals associated genes reprogramming, hormone signaling pathways and transcriptional regulation involved in somatic embryogenesis in maize. Somatic embryos are widely utilized in propagation and genetic engineering of crop plants. In our laboratory, an elite maize inbred line Y423 that could generate intact somatic embryos was obtained and applied to genetic transformation.
View Article and Find Full Text PDFA bean-shaped and dual-functionalized organic-inorganic hybrid supramolecular system with a GSH-dependent turn-on fluorescence enhancement property and stimuli-responsive drug delivery function endowed with leaning towerarene-based switches has been constructed for simultaneous tumor inhibition and imaging.
View Article and Find Full Text PDFA mutation in the nuclear localization signal of squamosa promoter binding like-protein 9 (SPL9) delays vegetative phase change by disrupting its nuclear localization. The juvenile-to-adult phase transition is a critical developmental process in plant development, and it is regulated by a decrease in miR156/157 and a corresponding increase in their targets, squamosa promoter binding protein-like (SPL) genes. SPL proteins contain a conserved SBP domain with putative nuclear localization signals (NLSs) at their C-terminals.
View Article and Find Full Text PDFSomatic embryos (SE) have potential to rapidly form a whole plant. Generally, SE is thought to be derived from embryogenic calli (EC). However, in maize, not only embryogenic calli (EC, can generate SE) but also nonembryogenic calli (NEC, can't generate SE) can be induced from immature embryos.
View Article and Find Full Text PDFSilencing of miR156 in rice confers enhanced resistance to brown planthopper through reducing JA and JA-Ile biosynthesis. Rice brown planthopper (BPH, Nilaparvata lugens Stål) threatens the sustainability of rice production and global food security. Due to the rapid adaptation of BPH to current germplasms in rice, development of novel types of resistant germplasms becomes increasingly important.
View Article and Find Full Text PDFUnlabelled: To date, transcriptome profile analysis of maize seedlings in response to cold stress have been well documented; however, changes in protein species abundance of maize seedlings in response to cold stress are still unknown. Herein, leaves from the maize inbred line W9816 (a cold-resistance genotype) were harvested at three-leaf stage, and were used to identify the differential abundance protein species (DAPS) between chilling stress (4°C) and control conditions (25°C). iTRAQ-based quantitative proteomic were used in this study.
View Article and Find Full Text PDFIntact somatic embryos were obtained from an elite maize inbred line Y423, bred in our laboratory. Using 13-day immature embryos after self-pollination as explants, and after 4-5 times subculture, a large number of somatic embryos were detected on the surface of the embryonic calli on the medium. The intact somatic embryos were transferred into the differential medium, where the plantlets regenerated with shoots and roots forming simultaneously.
View Article and Find Full Text PDFBacteriophages, the viruses of eubacteria, have developed unique mechanisms to interact with their host bacteria. They have been viewed as potential antibacterial therapeutics. Mycobacteriophage-derived compounds may interact with Mycobacterium tuberculosis (MTB) and/or its components, such as the cord factor, trehalose-6,6'-dimycolate (TDM), which is the most abundant glycolipid produced on the surface of MTB.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
September 2009
Horseflies are economically important blood-feeding arthropods and vectors for several pathogenic microorganisms. Horseflies rely heavily on pharmacological propriety of their saliva to get blood meal and suppress immune reactions of hosts. Few reports cover immune suppressants from horsefly salivary glands.
View Article and Find Full Text PDFWasp is an important venomous animal that can induce human fatalities. Coagulopathy is a clinical symptom after massive wasp stings, but the reason leading to the envenomation manifestation is still not known. In this paper, a toxin protein is purified and characterized by Sephadex G-75 gel filtration, CM-Sephadex C-25 cationic exchange and fast protein liquid chromatography (FPLC) from the venom of the wasp, Vespa magnifica (Smith).
View Article and Find Full Text PDF