Publications by authors named "Junyong Zeng"

Laser-based additive manufacturing has garnered significant attention in recent years as a promising 3D-printing method for fabricating metallic components. However, the surface roughness of additive manufactured components has been considered a challenge to achieving high performance. At present, the average surface roughness (Sa) of AM parts can reach high levels, greater than 50 μm, and a maximum distance between the high peaks and the low valleys of more than 300 μm, which requires post machining.

View Article and Find Full Text PDF

Laser polishing is a noncontact and efficient processing method for surface treatment of different materials. It removes surface material and improves its quality by means of a laser beam that acts directly on the surface of the material. The material surface roughness is a major criterion that evaluates the polishing effect when alumina ceramics are polished by a laser.

View Article and Find Full Text PDF

Laser polishing is an emerging efficient technique to remove surface asperity without polluting the environment. However, the insufficient understanding of the mechanism of laser polishing has limited its practical application in industry. In this study, a dual-beam laser polishing experiment was carried out to reduce the roughness of a primary Ti6Al4V sample, and the polishing mechanism was well studied using simulation analysis.

View Article and Find Full Text PDF

Laser polishing was used to reduce the surface roughness and improve the surface properties of alumina ceramics. In this paper, a response surface experimental design scheme is used to establish a mathematical model based on the Box-Behnken central combination principle, with the surface roughness as the optimization target to optimize the optimal process parameters for the laser polishing of alumina ceramics, to suppress the polished surface cracks by preheating the material, and to study the changes of surface properties of laser-polished alumina ceramics under different preheating temperatures. The optimal laser polishing process parameters were optimized by response surface experiments with a scanning speed of 323.

View Article and Find Full Text PDF

To improve the surface roughness of SKD61 die steel and reduce the secondary overflow of the molten pool, a steady magnetic field-assisted laser polishing method is proposed to study the effect of steady magnetic field on the surface morphology and melt pool flow behavior of SKD61 die steel. Firstly, a low-energy pulsed laser is used for the removal of impurities from the material surface; then, the CW laser, assisted by steady magnetic field, is used to polish the rough surface of SKD61 die steel to reduce the material surface roughness. The results show that the steady magnetic field-assisted laser polishing can reduce the surface roughness of SKD61 die steel from 6.

View Article and Find Full Text PDF