Publications by authors named "Junyong Huang"

Article Synopsis
  • The study investigates the relationship between interferon-induced transmembrane protein 2 (IFITM2) and programmed cell death ligand 1 (PDL1) in gastric cancer (GC) to understand their roles in tumor immunity.
  • Using databases and lab techniques, researchers found that both IFITM2 and PDL1 are often overexpressed in GC, with IFITM2 linked to worse patient outcomes and lymphatic metastasis.
  • The results suggest that IFITM2 enhances PDL1 expression through the JAK/STAT3 signaling pathway, indicating IFITM2 could be a potential target for immunotherapy in gastric cancer.
View Article and Find Full Text PDF

Background: Interferon-induced transmembrane protein 2 (IFITM2) is involved in repressing viral infection. This study aim to investigate the expression of IFITM2 in colorectal cancer (CRC) and explore its effect on cell proliferation, migration, and invasion.

Methods: We analyzed The Cancer Genome Atlas (TCGA) database for IFITM2 expression in colorectal cancer and used western blots to detect IFITM2 protein in specimens and cell lines of colorectal cancers.

View Article and Find Full Text PDF

The aim is to report the preliminary outcomes of percutaneous endovenous intervention (PEVI) for acute proximal deep vein thrombosis (DVT) secondary to iliac vein compression syndrome (IVCS) without inferior vena cava filter (IVCF) placement. Acute DVT patients who underwent PEVI without IVCF were analyzed retrospectively. PEVI consisted of catheter-directed thrombolysis, manual aspiration thrombectomy, balloon angioplasty and stenting.

View Article and Find Full Text PDF

Background: Drugs such as taxanes, epothilones, and vinca alkaloids are widely used in the treatment of breast, ovarian, and lung cancers but come with major side effects such as neuropathy and loss of neutrophils and as single agents have a lack of efficacy. M2I-1 (MAD2 inhibitor-1) has been shown to disrupt the CDC20-MAD2 interaction, and consequently, the assembly of the mitotic checkpoint complex (MCC).

Results: We report here that M2I-1 can significantly increase the sensitivity of several cancer cell lines to anti-mitotic drugs, with cell death occurring after a prolonged mitotic arrest.

View Article and Find Full Text PDF

The mitotic checkpoint complex (MCC) is formed from two sub-complexes of CDC20-MAD2 and BUBR1-BUB3, and current models suggest that it is generated exclusively by the kinetochores after nuclear envelope breakdown (NEBD). However, neither sub-complex has been visualised in vivo, and when and where they are formed during the cell cycle and their response to different SAC conditions remains elusive. Using single cell analysis in HeLa cells, we show that the CDC20-MAD2 complex is cell cycle regulated with a "Bell" shaped profile and peaks at prometaphase.

View Article and Find Full Text PDF

The relationships between the kinetochore and checkpoint control remain unresolved. Here, we report the characterization of the in vivo behavior of Cdc20 and Mad2 and the relevant spindle assembly checkpoint (SAC) functions in the neuroblasts of a Drosophila Mps1 weak allele (ald (B4-2) ). ald (B4-2) third instar larvae brain samples contain only around 16% endogenous Mps1 protein, and the SAC function is abolished.

View Article and Find Full Text PDF

The spindle assembly checkpoint (SAC) mechanism is an active signal, which monitors the interaction between chromosome kinetochores and spindle microtubules to prevent anaphase onset until the chromosomes are properly connected. Cells use this mechanism to prevent aneuploidy or genomic instability, and hence cancers and other human diseases like birth defects and Alzheimer's. A number of the SAC components such as Mad1, Mad2, Bub1, BubR1, Bub3, Mps1, Zw10, Rod and Aurora B kinase have been identified and they are all kinetochore dynamic proteins.

View Article and Find Full Text PDF

The role of specific cleavage of transcription repressor proteins by proteases and how this may be related to the emerging theme of dinucleotides as cellular signaling molecules is poorly characterized. The transcription repressor NmrA of Aspergillus nidulans discriminates between oxidized and reduced dinucleotides, however, dinucleotide binding has no effect on its interaction with the zinc finger in the transcription activator AreA. Protease activity in A.

View Article and Find Full Text PDF

To prevent aneuploidy, cells require a mitotic surveillance mechanism, the spindle assembly checkpoint (SAC). The SAC prevents metaphase/anaphase transition by blocking the ubiquitylation and destruction of cyclin B and securin via the Cdc20-activated anaphase-promoting complex or cyclosome (APC/C)-mediated proteolysis pathway. This checkpoint involves the kinetochore proteins Mad2, BubR1, and Cdc20.

View Article and Find Full Text PDF

Anaphase-promoting complex or cyclosome (APC/C) controls the metaphase-to-anaphase transition and mitosis exit by triggering the degradation of key cell cycle regulators such as securin and B-type cyclins. However, little is known about the functions of individual APC/C subunits and how they might regulate APC/C activity in space and time. Here, we report that two potential Cdk1 kinase phosphorylation sites are required for the chromosomal localisation of GFP::Cdc27 during mitosis.

View Article and Find Full Text PDF

Compromising the activity of the spindle checkpoint permits mitotic exit in the presence of unattached kinetochores and, consequently, greatly increases the rate of aneuploidy in the daughter cells. The metazoan checkpoint mechanism is more complex than in yeast in that it requires additional proteins and activities besides the classical Mads and Bubs. Among these are Rod, Zw10, and Zwilch, components of a 700 Kdal complex (Rod/Zw10) that is required for recruitment of dynein/dynactin to kinetochores but whose role in the checkpoint is poorly understood.

View Article and Find Full Text PDF

Fertilization of sea urchin eggs results in a large, transient increase in intracellular free Ca2+ concentration that is responsible for re-initiation of the cell division cycle. We show that activation of ERK1, a Ca2+-dependent MAP kinase response, is required for both DNA synthesis and cell cycle progression after fertilization. We combine experiments on populations of cells with analysis at the single cell level, and develop a proxy assay for DNA synthesis in single embryos, using GFP-PCNA.

View Article and Find Full Text PDF

In Drosophila cells, the destruction of cyclin B is spatially regulated. In cellularised embryos, cyclin B is initially degraded on the mitotic spindle and is then degraded in the cytoplasm. In syncytial embryos, only the spindle-associated cyclin B is degraded at the end of mitosis.

View Article and Find Full Text PDF

In Drosophila cells cyclin B is normally degraded in two phases: (a) destruction of the spindle-associated cyclin B initiates at centrosomes and spreads to the spindle equator; and (b) any remaining cytoplasmic cyclin B is degraded slightly later in mitosis. We show that the APC/C regulators Fizzy (Fzy)/Cdc20 and Fzy-related (Fzr)/Cdh1 bind to microtubules in vitro and associate with spindles in vivo. Fzy/Cdc20 is concentrated at kinetochores and centrosomes early in mitosis, whereas Fzr/Cdh1 is concentrated at centrosomes throughout the cell cycle.

View Article and Find Full Text PDF