Adv Healthc Mater
October 2024
Sutures are the most commonly used wound repair method after surgery. However, addressing delayed recovery and pain management remains a significant challenge. Here, microfibers are developed from microfluidic spinning with long-lasting analgesia capabilities for sutures.
View Article and Find Full Text PDFAdv Healthc Mater
October 2024
Reactive oxygen species (ROS) scavenging of nanozymes toward acute kidney injury (AKI) is a current promising strategy, however, the glomerular filtration barrier (GFB) limits their application for treating kidney related diseases. Here, a neutrophil-mediated delivery system able to hijack neutrophil to transport nanozyme-loaded cRGD-liposomes to inflamed kidney for AKI treatment by cRGD targeting integrin αvβ1 is reported. The neutrophil-mediated nanozyme delivery system demonstrated great antioxidant and anti-apoptosis ability in HK-2 and NRK-52E cell lines.
View Article and Find Full Text PDFThe therapeutic application of mesenchymal stem cells (MSCs) has good potential as a treatment strategy for systemic lupus erythematosus (SLE), but traditional MSC therapy still has limitations in effectively modulating immune cells. Herein, we present a promising strategy based on dexamethasone liposome-integrated MSCs (Dexlip-MSCs) for treating SLE multiple immunomodulatory pathways. This therapeutic strategy prolonged the circulation time of dexamethasone liposomes , restrained CD4T-cell proliferation, and inhibited the release of proinflammatory mediators (IFN-γ and TNF-α) by CD4T cells.
View Article and Find Full Text PDFBacterial skin infections are highly prevalent and pose a significant public health threat. Current strategies are primarily focused on the inhibition of bacterial activation while disregarding the excessive inflammation induced by dead bacteria remaining in the body and the effect of the acidic microenvironment during therapy. In this study, a novel dual-functional MgB microparticles integrated microneedle (MgB MN) patch is presented to kill bacteria and eliminate dead bacteria for skin infection management.
View Article and Find Full Text PDFSevere malaria is a life-threatening condition that is associated with a high mortality. Severe infections are mediated primarily by high parasitemia and binding of infected red blood cells (iRBCs) to the blood vessel endothelial layer, a process known as sequestration. Here, we show that including the 5-amino-2-methoxybenzenesulfonate (AMBS) chemical modification in soluble biopolymers (polyglutamic acid and heparin) and poly(acrylic acid)-exposing nanoparticles serves as a universal tool to introduce a potent parasite invasion inhibitory function in these materials.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2023
Massive periosteal defects often significantly impair bone regeneration and repair, which have become a major clinical challenge. Unfortunately, current engineered periosteal materials can hardly currently focus on achieving high tissue adhesion property, being suitable for cell growth, and inducing cell orientation concurrently to meet the properties of nature periosteum. Additionally, the preparation of oriented surface nanotopography often relies on professional equipment.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2023
Excessive cell-free DNA (cfDNA) in the serum and synovium is considered a causative factor of rheumatoid arthritis (RA). Thus, cfDNA scavenging by using cationic polymers has been an effective therapeutic avenue, while these stratagems still suffer from systemic toxicity and unstable capture of cfDNA. Here, inspired by the biological charge-trapping effects and active degradation function of enzyme-containing organelles in vivo, we proposed a cationic peptide dendrimer nanogel with deoxyribonuclease I (DNase I) conjugation for the treatment of RA.
View Article and Find Full Text PDFStem cell therapies have made great progress in the treatment of diabetic wounds during recent decades, while their short in vivo residence, alloimmune reactions, undesired behaviors, and dramatic losses of cell functions still hinder the translation of them into clinic. Here, inspired by the natural components of stem cell niches, we presented novel microfluidic hydrogel microcarriers with extracellular matrix (ECM)-like composition and adipose-derived stem cells (ADSCs) encapsulation for diabetic wound healing. As the hydrogel was synthesized by conjugating hyaluronic acid methacryloyl (HAMA) onto the Fibronectin (FN) molecule chain (FN-HAMA), the laden ADSCs in the microcarriers showed improved bioactivities and pro-regenerative capabilities.
View Article and Find Full Text PDFWound infections continuously impose a huge economic and social burden on public healthcare. Despite the effective treatment of bacteria-infected wounds after using traditional antibiotics, the misuse of antibiotics usually causes the spread of bacterial resistance and decreases therapeutic outcomes. Therefore, the development of efficient antibacterial agents is urgently needed.
View Article and Find Full Text PDFRationale And Objectives: Accurate pretreatment assessment of histological differentiation grade of head and neck squamous cell carcinoma (HNSCC) is crucial for prognosis evaluation. This study aimed to construct and validate a contrast-enhanced computed tomography (CECT)-based deep learning radiomics nomogram (DLRN) to predict histological differentiation grades of HNSCC.
Materials And Methods: A total of 204 patients with HNSCC who underwent CECT scans were enrolled in this study.
Infectious diseases continue to pose a substantial burden on global populations, requiring innovative broad-spectrum prophylactic and treatment alternatives. Here, we have designed modular synthetic polymer nanoparticles that mimic functional components of host cell membranes, yielding multivalent nanomimics that act by directly binding to varied pathogens. Nanomimic blood circulation time was prolonged by reformulating polymer-lipid hybrids.
View Article and Find Full Text PDFPolymersomes are vesicular structures self-assembled from amphiphilic block copolymers and are considered an alternative to liposomes for applications in drug delivery, immunotherapy, biosensing, and as nanoreactors and artificial organelles. However, the limited availability of systematic stability, protein fouling (protein corona formation), and blood circulation studies hampers their clinical translation. Poly(2-oxazoline)s (POx) are valuable antifouling hydrophilic polymers that can replace the current gold-standard, poly(ethylene glycol) (PEG), yet investigations of POx functionality on nanoparticles are relatively sparse.
View Article and Find Full Text PDFTissue bacterial infections are a major pathological factor in many diseases. Effects on this aspect are in focus for the development of coordinated therapeutic strategies for bacterial killing and anti-inflammation. Here, inspired by the biodetoxification capacity of immune cells, multifunctional biomimetic nanovesicles (MϕM-LPs) that are co-assembled by macrophage membranes and artificial lipids to deliver antibiotics for treating bacterial infections, are presented.
View Article and Find Full Text PDFA vaccine antigen, when launched as DNA or RNA, can be presented in various forms, including intracellular, secreted, membrane-bound, or on extracellular vesicles (EVs). Whether an antigen in one or more of these forms is superior in immune induction remains unclear. In this study, we used GFP as a model antigen and first compared the EV-loading efficiency of transmembrane domains (TMs) from various viral glycoproteins, and then investigated whether EV-bound GFP (EV-GFP) would enhance immune induction.
View Article and Find Full Text PDFAdoptive immunotherapies based on the transfer of functional immune cells hold great promise in treating a wide range of malignant diseases, especially cancers, autoimmune diseases, and infectious diseases. However, manufacturing issues and biological barriers lead to the insufficient population of target-selective effector cells at diseased sites after adoptive transfer, hindering effective clinical translation. The convergence of immunology, cellular biology, and materials science lays a foundation for developing biomaterial-based engineering platforms to overcome these challenges.
View Article and Find Full Text PDFAtherosclerosis is a chronic inflammatory disease and the major pathological factor of most cardiovascular diseases, leading to ≈1/3 of deaths worldwide. Improving local delivery of anti-inflammatory drugs to the site of atherosclerosis has significant promise to prevent the development of atherosclerotic plaque clinically. Here, a modified-macrophage-membrane-coated nanoparticle drug delivery able to transport colchicine to the atherosclerotic site is reported.
View Article and Find Full Text PDFAntibiotic resistance is a serious global health problem necessitating new bactericidal approaches such as nanomedicines. Dendrimersomes (DSs) have recently become a valuable alternative nanocarrier to polymersomes and liposomes due to their molecular definition and synthetic versatility. Despite this, their biomedical application is still in its infancy.
View Article and Find Full Text PDFUncontrolled inflammation is a major pathological factor underlying a range of diseases including autoimmune conditions, cardiovascular disease, and cancer. Improving localized delivery of immunosuppressive drugs to inflamed tissue in a non-invasive manner offers significant promise to reduce severe side effects caused by systemic administration. Here, a neutrophil-mediated delivery system able to transport drug-loaded nanocarriers to inflamed tissue by exploiting the inherent ability of neutrophils to migrate to inflammatory tissue is reported.
View Article and Find Full Text PDFMany diseases are associated with the dysregulated activity of enzymes, such as matrix metalloproteinases (MMPs). This dysregulation can be leveraged in drug delivery to achieve disease- or site-specific cargo release. Self-assembled polymeric nanoparticles are versatile drug carrier materials due to the accessible diversity of polymer chemistry.
View Article and Find Full Text PDFSynthetic carriers of nucleic acids remain inefficient for practical applications due to their insufficient functions as compared with viral vectors developed by evolution. Here, a synthetic carrier is designed to structurally mimic lentivirus, a widely-used viral vector in therapeutic developments, for its neutral phospholipid membrane tightly anchored on the surface of a packed nucleic acid core. Unlike the reported lipopolyplexes of which the surface membrane around the nucleic acid core is formed from charged lipids, the stable attachment of the neutral lipids to each polyplex core in the present system is achieved through preadsorbed micelles of multicarboxyl amphiphilic molecules as lipid bilayer anchors.
View Article and Find Full Text PDFPurpose: To determine the feasibility of the rotating stretched curved planar reconstruction (CPR) of three-dimensional fast imaging with steady-state acquisition magnetic resonance imaging (3D-FIESTA MRI) for evaluating the anterior cruciate ligament of the knee joint.
Materials And Methods: MRI of 40 knee joints in healthy volunteers was performed on a 3.0-T MR scanner and a phased-array extremity coil.
Background: The purpose of this study was to determine the contrast-enhanced CT characteristics for differentiating between Castleman disease (CD) and lymphoma in neck lymph nodes.
Methods: This retrospective study evaluated the number (solitary or multiple), strength of contrast-enhancement, type of contrast-enhancement, surrounding vessels, contrast-enhanced Hounsfield unit (HU) values, and anatomical distributions of lymph nodes in 34 patients with confirmed CD and 55 patients with newly diagnosed untreated lymphoma. Independent t-tests, receiver operating characteristic (ROC) curve analysis, and chi-square tests were used to evaluate the variables and CT features.
ACS Appl Mater Interfaces
February 2018
To achieve a successful delivery of siRNA by carriers in vivo, the degradation of polymers in response to tiny intracellular changes should be seriously considered. In addition, the balance between degradation and stability of polymers is another key point for high performance of carriers. In this study, imine and disulfide linkages, which are sensitive to pH changes and redox environment, respectively, were constructed as the main backbone of polymers to deliver siRNA at the intracellular and animal level.
View Article and Find Full Text PDFMicroRNA (miRNA) has great potential to treat a wide range of illnesses by regulating the expression of eukaryotic genes. Biomaterials with high transfection efficiency and low toxicity are needed to deliver miRNA to target cells. In this study, a biodegradable and biocompatible cationic polymer (PDAPEI) was synthetized from low molecular weight polyethyleneimine (PEI1.
View Article and Find Full Text PDF