Publications by authors named "Junyeong Ma"

Mouse gut microbiome research is pivotal for understanding the human gut microbiome, providing insights into disease modeling, host-microbe interactions, and the dietary influence on the gut microbiome. To enhance the translational value of mouse gut microbiome studies, we need detailed and high-quality catalogs of mouse gut microbial genomes. We introduce the Mouse Reference Gut Microbiome (MRGM), a comprehensive catalog with 42,245 non-redundant mouse gut bacterial genomes across 1,524 species.

View Article and Find Full Text PDF

Mouse gut microbiome research is pivotal for understanding the human gut microbiome, providing insights into disease modeling, host-microbe interactions, and the dietary influence on the gut microbiome. To enhance the translational value of mouse gut microbiome studies, we need detailed and high-quality catalogs of mouse gut microbial genomes. We introduce the Mouse Reference Gut Microbiome (MRGM), a comprehensive catalog with 42,245 non-redundant mouse gut bacterial genomes across 1,524 species.

View Article and Find Full Text PDF

Recent substantial evidence implicating commensal bacteria in human diseases has given rise to a new domain in biomedical research: microbiome medicine. This emerging field aims to understand and leverage the human microbiota and derivative molecules for disease prevention and treatment. Despite the complex and hierarchical organization of this ecosystem, most research over the years has relied on 16S amplicon sequencing, a legacy of bacterial phylogeny and taxonomy.

View Article and Find Full Text PDF

Advances in metagenomic assembly have led to the discovery of genomes belonging to uncultured microorganisms. Metagenome-assembled genomes (MAGs) often suffer from fragmentation and chimerism. Recently, 20 complete MAGs (cMAGs) have been assembled from Oxford Nanopore long-read sequencing of 13 human fecal samples, but with low nucleotide accuracy.

View Article and Find Full Text PDF