Perovskite solar cells (PSCs) can enable renewable electricity generation at low levelized costs, subject to the invention of an economically feasible technology for their large-scale fabrication, like vapor deposition. This approach is effective for the fabrication of small area (<1 cm) PSCs, but its scale-up to produce high-efficiency larger area modules has been limited by a severe imbalance between the vapor-solid reaction kinetics and the mass-transport of the volatile ammonium salt precursor. In this study, an amidine-based low-dimensional perovskite is introduced as an intermediate of the solid-vapor reaction to help resolve this limitation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
Wide-bandgap semitransparent perovskite photovoltaics are emerging as one of the ideal candidates for building-integrated photovoltaics (BIPV). However, surface defects in inorganic CsPbBr perovskite prepared by vapor deposition severely limit the optoelectronic performance of perovskite solar cells. To address this issue, a strategy of doping a trace amount of KBr into perovskite by vapor deposition is adopted, effectively improving the quality of the film, reducing surface defect concentration, and enhancing the transportation and extraction of charge carriers.
View Article and Find Full Text PDFVapor deposition is a promising technology for the mass production of perovskite solar cells. However, the efficiencies of solar cells and modules based on vapor-deposited perovskites are significantly lower than those fabricated using the solution method. Emerging evidence suggests that large defects are generated during vapor deposition owing to a specific top-down crystallization mechanism.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2021
To accelerate the commercial application of organic-inorganic hybrid perovskite solar cells (PSCs), it is necessary to develop simple and low-cost methods to prepare pinhole-free large-area perovskite films with high quality. A one-step blade coating method is regarded as a scalable technique. It is demonstrated that with the addition of ,'-dimethylpropyleneurea (DMPU) in an FA-dominated perovskite precursor, a large-area high-quality perovskite film can be obtained by blade coating, achieving improved photovoltaic performance, thermal stability, and storage stability.
View Article and Find Full Text PDF