Publications by authors named "Junyang Ding"

The construction of coupled electrolysis systems utilizing renewable energy sources for electrocatalytic nitrate reduction and sulfion oxidation reactions (NORR and SOR), is considered a promising approach for environmental remediation, ammonia production, and sulfur recovery. Here, a simple chemical dealloying method is reported to fabricate a hierarchical porous multi-metallic spinel MFeO (M═Ni, Co, Fe, Mn) dual-functional electrocatalysts consisting of Mn-doped porous NiFeO/CoFeO heterostructure networks and Ni/Co/Mn co-doped FeO nanosheet networks. The excellent NORR with high NH Faradaic efficiency of 95.

View Article and Find Full Text PDF

Ammonia (NH) synthesis via the nitrate reduction reaction (NORR) offers a competitive strategy for nitrogen cycling and carbon neutrality; however, this is hindered by the poor NORR performance under high current density. Herein, it is shown that boron-doped TiCT MXene nanosheets can highly efficiently catalyze the conversion of NORR-to-NH at ambient conditions, showing a maximal NH Faradic efficiency of 91% with a peak yield rate of 26.2 mgh mg , and robust durability over ten consecutive cycles, all of them are comparable to the best-reported results and exceed those of pristine TiCT MXene.

View Article and Find Full Text PDF

Urea electrosynthesis has appeared to meet the nitrogen cycle and carbon neutrality with energy-saving features. Copper can co-electrocatalyze among CO and nitrogen species to generate urea, however developing effective electrocatalysts is still an obstacle. Here, we developed a nitrogen-doped porous carbon loaded with FeCu clusters that convert CO and NO into urea, with the highest Faradaic efficiency of 39.

View Article and Find Full Text PDF

For the electroreduction of carbon dioxide into high value-added chemicals, highly active and selective catalysts are crucial, and metallic silver is one of the most intriguing candidate materials available at a reasonable cost. Herein, through a novel two-step operation of Ag paste/SBA-15 coating and HF etching, porous silver films on a commercial carbon paper with a waterproofer (p-Ag/CP) could be easily fabricated on a large scale as highly efficient carbon dioxide reduction reaction (CORR) electrocatalysts with a CO Faraday efficiency (FE) as high as 96.7% at -1.

View Article and Find Full Text PDF

Herein, two-dimensional cobalt-doped MnPSe nanosheets (CMPS) were constructed, which served as an outstanding bifunctional catalyst for alkaline seawater splitting, , offering the current density of 10 mA cm with applied overpotentials of 59 and 300 mV for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. The assembled two-electrode system of CMPS//CMPS also demonstrated excellent catalytic activity (10 mA cm, 1.59 V) and can remain stable for more than 100 h.

View Article and Find Full Text PDF

Water electrolysis represented a promising avenue for the large-scale production of high-purity hydrogen. However, the high overpotential and sluggish reaction rates associated with the anodic oxygen evolution reaction (OER) posed significant obstacles to efficient water splitting. To tackle these challenges, the urea oxidation reaction (UOR) emerged as a more favorable thermodynamic alternative to OER, offering both the energy-efficient hydrogen evolution reaction (HER) and the potential for the treating of urea-rich wastewater.

View Article and Find Full Text PDF

As the population increases sharply around the globe, huge shortages are occurring in energy resources. Renewable resources are urgently required to be developed to satisfy human demands. Unlike the lithium-ion batteries with safety and cost issues, the redox flow battery (RFB) is economical, stable, and convenient for the development of large-scale stationary electrical energy storage applications.

View Article and Find Full Text PDF

Single-atom catalysts (SACs) have emerged as well-known catalysts in renewable energy storage and conversion systems. Several supports have been developed for stabilizing single-atom catalytic sites, e.g.

View Article and Find Full Text PDF

Exploiting effective non-noble metal electrocatalysts for oxygen reduction reaction (ORR) is crucial for fuel cells and metal-air batteries. Herein, we designed and fabricated Co nanoparticles confined in Mo/N co-doped polyhedral carbon frameworks (Co-NP/MNCF) derived from polyoxometalate-encapsuled metal-organic framework, which showed comparable ORR performance with commercial Pt/C and a larger diffusion-limited current density. Moreover, the Co-NP/MNCF also exhibited excellent ORR stability and methanol tolerance.

View Article and Find Full Text PDF

One type of porous carbon nanomaterial decorated by abundant Pt/ZrO nanoparticles can be conveniently prepared, which is pyrolyzed from flower-shaped Zr-based UiO-67 precursor with a small amount of HPtCl molecules in its large pores. In addition, the obtained Pt/ZrO carbon electrocatalyst can bring efficient electrocatalytic hydrogen evolution performance and long-term stability.

View Article and Find Full Text PDF

With the development of renewable energy systems, clean hydrogen is burgeoning as an optimal alternative to fossil fuels, in which its application is promising to retarding the global energy and environmental crisis. The hydrogen evolution reaction (HER), capable of producing high-purity hydrogen rapidly in electrocatalytic water splitting, has received much attention. Abundant research about HER has been done, focusing on advanced electrocatalyst design with high efficiency and robust stability.

View Article and Find Full Text PDF

Due to the harmfulness of diabetes, a fast and efficient glucose detector is particularly important. Metal-organic polyhedron (MOP) provides a porous framework and a special matrix, which makes it an excellent precursor for electrochemical detection. Herein, we report a novel MOP as a precursor for the preparation of an electrocatalytic detector for glucose.

View Article and Find Full Text PDF

Oxygen evolution reaction (OER) on the anode has become one of the most widely studied electrochemical processes, which poses an important role in several energy generation technologies. In this work, we have designed and synthesized a series of metal-organic framework (MOF)-derived oxides pyrolyzed at different temperatures for efficient water oxidation in alkaline solutions. First, the barrel-shaped microcrystals can be conveniently synthesized under solvothermal conditions, and the hollow morphology of with low crystallinity can be obtained through the fierce hydrolysis of Fe(III) ions.

View Article and Find Full Text PDF

Low-cost heteroatom-doped carbon nanomaterials have been widely studied for efficient oxygen reduction reaction and energy storage and conversion in metal-air batteries. A Masson pine twigs-like 3-dimensional network construction of carbon nanofibers (CNFs) with abundant straight long Co, N, and S-doped carbon nanotubes (CNTs) is developed by thermal treatment of Co-based polymer coated onto polyacrylonitrile nanofiber network together with thiourea at 900 °C, denoted as CNFT-Co S -900. It is interesting to note that the introduction of a high concentration of sulfur does not lead to the complete toxicity of catalysts, but promotes the axial growth to selectively form straight CNTs instead of curly bamboo-like CNTs.

View Article and Find Full Text PDF

In the preparation of nanomaterials, the kinetics and thermodynamics in the reaction can significantly affect the structures and phases of nanocrystals. Therefore, people are keen to adopt various synthetic strategies to accurately assemble the target nanocrystals, and reveal the underlying mechanism of the formation of specific structures. In this work, the total reaction time is adjusted to let the prepared MnCo Prussian blue analogous (MnCoPBA) crystals show four evolving morphological changes at different stages with the assistance of sodium dodecyl sulfate.

View Article and Find Full Text PDF

For electrocatalysis, the development of highly active and low-cost stable electrocatalysts, which would be directly applied in cathodes for fuel cells that are regarded as the most promising candidates for clean energy conversion in the quest for alternatives to conventional fossil fuel technology, remains a massive challenge. In this context, oxygen reduction reaction (ORR) is a critical process under intense research for the direct conversion of chemical energy into electricity. Herein, a facile synthetic method is proposed for the preparation of hierarchically porous 2-dimensional nanosheets consisting of Fe4C and FeCo nanoparticles incorporated in N/S-doped carbon materials at 900 °C, denoted as InFeCo@CNS900.

View Article and Find Full Text PDF

The rapid development of suitable and cheap water oxidation catalysts is of great significance in energy conversion and storage. In this context, herein we have synthesized two different types of metal-organic frameworks (MOFs, denoted as and ) constructed from the same metal salts (cobalt nitrate) and organic linkers (HBPTC) at the similar solvothermal conditions. Interestingly, we learned that both crystalline materials can be conveniently converted into each other by a single-crystal-to-single-crystal transformation method at their corresponding synthetic conditions.

View Article and Find Full Text PDF