Efficient retention of drugs at tumor sites was always desirable to maximize therapeutic functions, yet the main concern is the dynamic blood clearance induced fast removal from localized lesion. Herein, a tumor microenvironment activated covalently conjugation (self- and proximal conjugation) of tyramine modified Pt nanoclusters (PCMT NPs) was constructed by in situ produced radical hooks, leading to efficient accumulation of PCMT NPs at tumor sites. Such accumulation further aggravated the oxidative stress and provoked autophagy of tumor cells via activating the caspase-3 pathway mediated massive apoptosis, thereby stimulating immunogenic cell death (ICD).
View Article and Find Full Text PDFIn this work, we report the same trends for the contact potential difference measured by Kelvin probe force microscopy and the effective carrier lifetime on crystalline silicon (c-Si) wafers passivated by AlO layers of different thicknesses and submitted to annealing under various conditions. The changes in contact potential difference values and in the effective carrier lifetimes of the wafers are discussed in view of structural changes of the c-Si/SiO/AlO interface thanks to high resolution transmission electron microscopy. Indeed, we observed the presence of a crystalline silicon oxide interfacial layer in as-deposited (200 °C) AlO, and a phase transformation from crystalline to amorphous silicon oxide when they were annealed in vacuum at 300 °C.
View Article and Find Full Text PDF