The cytoplasmic regulatory protein p62 (Sequestosome 1/A170) is known to modulate various receptor-mediated intracellular signaling pathways. p62 deficiency was shown to result in mature-onset obesity in mice, but the mechanisms underlying this abnormality remained unclear. Here we report that hyperphagia due to central leptin resistance is the cause of obesity in p62(-/-) mice.
View Article and Find Full Text PDFDeficiency in the signal adaptor protein sequestosome 1 (SQSTM1/A170/p62) in mice is associated with mature-onset obesity, accompanied by insulin and leptin resistance. We previously established that redox sensitive transcription factor Nrf2 up-regulates SQSTM1 expression in response to atherogenic stimuli or laminar shear stress in vascular cells, and here examine the role of SQSTM1 in neointimal hyperplasia and vascular remodelling in vivo following carotid artery ligation. Neointimal hyperplasia was markedly enhanced at ligation sites after 3 weeks in SQSTM1(-/-) compared with wild-type (WT) mice.
View Article and Find Full Text PDFAim: Sequestosome 1 (SQSTM1)/A170/p62 plays an important role in membrane-receptor mediated signal transduction and autophagic protein degradation. Although the mechanism involved is not clear, sqstm1 gene knockout (KO) mice develop mature-onset obesity and insulin resistance, leading to type II diabetes. KO mice show accumulation of fat in white adipose tissue and the liver when fed a standard diet.
View Article and Find Full Text PDFInactivation of constitutive autophagy results in formation of cytoplasmic protein inclusions and leads to liver injury and neurodegeneration, but the details of abnormalities related to impaired autophagy are largely unknown. Here we used mouse genetic analyses to define the roles of autophagy in the aforementioned events. We report that the ubiquitin- and LC3-binding protein "p62" regulates the formation of protein aggregates and is removed by autophagy.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2006
Peroxiredoxin I (Prx I) is a key cytoplasmic peroxidase that reduces intracellular hydroperoxides in concert with thioredoxin. To study the role of tissue Prx I in protection from oxidative stress, we generated Prx I-/- mice by gene trapping. We then evaluated the acute-phase tissue damage caused by ferric-nitrilotriacetate (Fe-NTA).
View Article and Find Full Text PDFRodents have brownish-yellow incisors whose colour represents their iron content. Iron is deposited into the mature enamel by ameloblasts that outline enamel surface of the teeth. Nrf2 is a basic region-leucine zipper type transcription factor that regulates expression of a range of cytoprotective genes in response to oxidative and xenobiotic stresses.
View Article and Find Full Text PDF