Publications by authors named "Junxing Zhang"

Vehicle logo detection (VLD) is a critical component of intelligent transportation systems (ITS), particularly for vehicle identification and management in dynamic traffic environments. However, traditional object detection methods are often constrained by image resolution, with vehicle logos in existing datasets typically measuring 32 × 32 pixels. In real-world scenarios, the actual pixel size of vehicle logos is significantly smaller, making it challenging to achieve precise recognition in complex environments.

View Article and Find Full Text PDF

The incidence of bovine endometritis, which has a negative impact on the reproduction of dairy cows, has been recently increasing. In this study, the differential markers and metabolites of healthy cows and cows with endometritis were analyzed by measuring blood biochemical indicators and immune factors using biochemical and enzyme-linked immunosorbent assay kits combined with nontargeted metabolomics. The LC-QTOF platform was used to evaluate the serum metabolomics of healthy cows and cows with endometritis after 21-27 days of calving.

View Article and Find Full Text PDF

The preparation process and composition design of heavy-section ductile iron are the key factors affecting its fracture toughness. These factors are challenging to address due to the long casting cycle, high cost and complex influencing factors of this type of iron. In this paper, 18 cubic physical simulation test blocks with 400 mm wall thickness were prepared by adjusting the C, Si and Mn contents in heavy-section ductile iron using a homemade physical simulation casting system.

View Article and Find Full Text PDF

Herd health is one of the key problems influencing the efficiency of the dairy industry. Genetic selection, with a focus on animal health, is important for herd improvement. This study aimed to estimate genetic parameters for health traits and their correlations with fertility and milk production traits in dairy cattle.

View Article and Find Full Text PDF

Gene expression in cells is determined by the epigenetic state of chromatin. Therefore, the study of epigenetic changes is very important to understand the regulatory mechanism of genes at the molecular, cellular, tissue and organ levels. DNA methylation is one of the most studied epigenetic modifications, which plays an important role in maintaining genome stability and ensuring normal growth and development.

View Article and Find Full Text PDF

Enhancing the immune response through breeding is regarded as an effective strategy for improving animal health, as dairy cattle identified as high immune responders are reported to have a decreased prevalence of economically significant diseases. The identification of differentially expressed genes (DEGs) associated with immune responses might be an effective tool for breeding healthy dairy cattle. In this study, antibody-mediated immune responses (AMIRs) were induced by the immunization of hen egg white lysozyme (HEWL) in six Chinese Holstein dairy bulls divided into high- and low-AMIR groups based on their HEWL antibody level.

View Article and Find Full Text PDF

ADAM metallopeptidase with thrombospondin type 1 motif (ADAMTS) are secreted, multi-domain matrix-related zinc endopeptidases that play a role in organogenesis, assembly and degradation of extracellular matrix (ECM), cancer and inflammation. Genome-wide identification and analysis of the bovine ADAMTS gene family has not yet been carried out. In this study, 19 ADAMTS family genes were identified in Bos taurus by genome-wide bioinformatics analysis, and they were unevenly distributed on 12 chromosomes.

View Article and Find Full Text PDF

Background: Skeletal muscle is not only an important tissue involved in exercise and metabolism, but also an important part of livestock and poultry meat products. Its growth and development determines the output and quality of meat to a certain extent, and has an important impact on the economic benefits of animal husbandry. Skeletal muscle development is a complex regulatory network process, and its molecular mechanism needs to be further studied.

View Article and Find Full Text PDF

Skeletal muscle satellite cells (MuSCs) can proliferate, differentiate, and self-renew, and can also participate in muscle formation and muscle injury repair. Long noncoding RNAs (lncRNAs) can play an important role with the RNA binding protein and microRNAs (miRNAs) to regulate the myogenesis of bovine MuSCs, however, its molecular mechanism is still being explored. In this study, differentially expressed 301 lncRNAs were identified during the myogenic differentiation of cells based on an in vitro model of induced differentiation of bovine MuSCs using RNA sequencing (RNA-seq).

View Article and Find Full Text PDF

Fibroblast growth factor (FGF) family genes are a class of polypeptide factors with similar structures that play an important role in regulating cell proliferation and differentiation, nutritional metabolism, and neural activity. In previous studies, the FGF gene has been widely studied and analyzed in many species. However, the systematic study of the FGF gene in cattle has not been reported.

View Article and Find Full Text PDF

Plants can recruit beneficial microbes to help improve their fitness under abiotic or biotic stress. Our previous studies found that could enrich beneficial sp. B36 in the rhizosphere soil under autotoxic ginsenoside stress.

View Article and Find Full Text PDF

Compared with the use of monocultures in the field, cultivation of medicinal herbs in forests is an effective strategy to alleviate disease. Chemical interactions between herbs and trees play an important role in disease suppression in forests. We evaluated the ability of leachates from needles of to induce resistance in leaves, identified the components via gas chromatography-mass spectrometry (GC-MS), and then deciphered the mechanism of 2,3-Butanediol as the main component in the leachates responsible for resistance induction via RNA sequencing (RNA-seq).

View Article and Find Full Text PDF

The objective of this study was to explore the genetic parameters of conformation traits and milk production traits in Chinese Holstein cattle and to provide a reference for dairy cattle breeding. We collected the phenotypic data of 23 conformation traits and five milk production traits of Chinese Holsteins and used animal models to estimate the genetic parameters of conformation traits and milk production traits. The estimated heritability of conformation traits ranged from 0.

View Article and Find Full Text PDF

Negative plant-soil feedback (NPSF) due to the buildup of soilborne pathogens in soil is a major obstacle in sustainable agricultural systems. Beneficial rhizosphere microfloras are recruited by plants, and mediating this has become a strategic priority to manipulate plant health. Here, we found that foliar infection of Panax notoginseng by Alternaria panax changed plant-soil feedback from negative to positive.

View Article and Find Full Text PDF

The grassland in the Qinghai-Tibetan plateau provide habitat for many indigenous and introduced ruminants which perform important ecological functions that impact the whole Qinghai-Tibetan plateau ecosystem. These indigenous Tibetan ruminants have evolved several adaptive traits to withstand the severe environmental conditions, especially cold, low oxygen partial pressure, high altitude, strong UV radiation, and poor forage availability on the alpine rangelands. Despite the challenges to husbandry associated with the need for enhanced adaptation, several domesticated ruminants have also been successfully introduced to the alpine pasture regions to survive in the harsh environment.

View Article and Find Full Text PDF

Numerical optimization has been a popular research topic within various engineering applications, where differential evolution (DE) is one of the most extensively applied methods. However, it is difficult to choose appropriate control parameters and to avoid falling into local optimum and poor convergence when handling complex numerical optimization problems. To handle these problems, an improved DE (BROMLDE) with the Bernstein operator and refracted oppositional-mutual learning (ROML) is proposed, which can reduce parameter selection, converge faster, and avoid trapping in local optimum.

View Article and Find Full Text PDF

This paper suggests an adaptive funnel dynamic surface control method with a disturbance observer for the permanent magnet synchronous motor with time delays. An improved prescribed performance function is integrated with a modified funnel variable at the beginning of the controller design to coordinate the permanent magnet synchronous motor with the output constrained into an unconstrained one, which has a faster convergence rate than ordinary barrier Lyapunov functions. Then, the specific controller is devised by the dynamic surface control technique with first-order filters to the unconstrained system.

View Article and Find Full Text PDF

Intelligent fault diagnosis methods based on deep learning have achieved much progress in recent years. However, there are two major factors causing serious degradation of the performance of these algorithms in real industrial applications, i.e.

View Article and Find Full Text PDF

Background: Fat deposition is an important economic trait in livestock and poultry production. However, the relationship between various genes and signal pathways of fat deposition is still unclear to a large extent. The purpose of this study is to analyze the potential molecular targets and related molecular pathways in bovine subcutaneous adipose tissue.

View Article and Find Full Text PDF

Background: Substantive evidence has confirmed that nutrition state is associated with health risk and the onset of pubertal and metabolic profile. Due to heterogeneity, adipose tissues in different anatomical positions tend to show various metabolic mechanisms for nutrition. To date, the complicated molecular mechanisms of early calf-hood nutrition on bovine adipose tissue are still largely unknown.

View Article and Find Full Text PDF

Myostatin (MSTN) is an important negative regulator of muscle growth and development. In this study, we performed comparatively the proteomics analyses of gluteus tissues from MSTN Mongolian cattle (MG.MSTN) and wild type Mongolian cattle (MG.

View Article and Find Full Text PDF

IoT and 5G technologies are making smart devices, medical devices, cameras and various types of sensors become parts of the Internet, which provides feasibility to the realization of infrastructure and services such as smart homes, smart cities, smart medical technology and smart transportation. Fog computing (edge computing) is a new research field and can accelerate the analysis speed and decision-making for these delay-sensitive applications. It is very important to test functions and performances of various applications and services before they are deployed to the production environment, and current evaluations are more based on various simulation tools; however, the fidelity of the experimental results is a problem for most of network simulation tools.

View Article and Find Full Text PDF

There is a concerted understanding of the accumulation of soil pathogens as the major driving factor of negative plant-soil feedback (NPSF). However, our knowledge of the connection between plant growth, pathogen build-up and soil microbiome assemblage is limited. In this study, significant negative feedback between the soil and sanqi () was found, which were caused by the build-up of the soil-borne pathogens , , and .

View Article and Find Full Text PDF

Accumulating evidence suggests that long non-coding RNAs (lncRNAs) play a crucial role in regulating skeletal muscle myogenesis, a highly coordinated multistep biological process. However, most studies of lncRNAs have focused on humans, mouse, and other model animals. In this study, we identified a novel lncRNA, named lncKBTBD10, located in the nucleus and involved in the proliferation and differentiation of bovine skeletal muscle satellite cells.

View Article and Find Full Text PDF

Objective: To investigate the remediation efficiency of polychlorinated biphenyl (PCB)-contaminated soils by the combination of a bioemulsifying protein, AlnA, and alfalfa expressing bphC.

Result: The combination of AlnA and transgenic alfalfa promoted PCB soil remediation through the pot experiments. The removal rates of tri-PCBs (PCB 16/PCB 32 and PCB 31/PCB 28) and tetra-PCB (PCB 49) in transgenic alfalfa/AlnA treatment were 3.

View Article and Find Full Text PDF