Introduction: Early brain injury (EBI) plays a key role in the devastating outcomes after subarachnoid hemorrhage (SAH). Autophagy and apoptosis may share a common molecular inducer that regulates the process of cell death. FoxO1, as a key regulator of neuronal autophagy which is involved in apoptosis, has not been reported in SAH rats.
View Article and Find Full Text PDFAims: Accumulating evidence elucidates the biological significance of long non-coding RNA (lncRNAs) in tumorigenesis and development. FGD5 antisense RNA 1 (FGD5-AS1) was previously revealed as an oncogene in several types of malignancies. However, the roles of FGD5-AS1 in glioblastoma (GBM) and its potential molecular mechanisms remain unclear.
View Article and Find Full Text PDFIntroduction: Long non-coding RNAs (LncRNAs) have been demonstrated to play a vital role in human carcinogenesis. HOXA cluster antisense RNA 2 (HOXA-AS2), a 1048-bp lncRNA located between the HOXA3 and HOXA4 genes, is identified as an oncogene in several malignancies, including glioma. However, the biological functions of HOXA-AS2 and its underlying molecular mechanisms in glioma progression remain to be investigated.
View Article and Find Full Text PDFThe aim of the present study was to explore the effect of bergamottin, a natural furanocoumarin obtained from grapefruit juice, on the invasiveness of human glioma cells. The results revealed that treatment with bergamottin for 48 h significantly inhibited wound-healing migration and Matrigel invasion of human glioma cells, compared with untreated cells (P<0.05).
View Article and Find Full Text PDFChemical RNA modifications are central features of epitranscriptomics, highlighted by the discovery of modified ribonucleosides in mRNA and exemplified by the critical roles of RNA modifications in normal physiology and disease. Despite a resurgent interest in these modifications, the biochemistry of 3-methylcytidine (mC) formation in mammalian RNAs is still poorly understood. However, the recent discovery of as the second gene responsible for mC presence in RNA in fission yeast raises the possibility that multiple enzymes are involved in mC formation in mammals as well.
View Article and Find Full Text PDF