Defect engineering is a promising approach to improve the conductivity and increase the active sites of transition metal oxides used as catalysts for the oxygen evolution reaction (OER). However, when metal defects and oxygen defects coexist closely within the same crystal, their compensating charges can diminish the benefits of both defect structures on the catalyst's local electronic structure. To address this limitation, a novel strategy that employs the heterostructure interface of ZnFeO-NiCoO to spatially separate the metal defects from the oxygen defects is proposed.
View Article and Find Full Text PDFIn eukaryotes, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are reversibly regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Increasing evidence highlights histone acetylation plays essential roles in the regulation of gene expression in plant response to environmental stress.
View Article and Find Full Text PDFMetal defect engineering is a highly effective strategy for addressing the prevalent high overpotential issues associated with transition metal oxides functioning as dual-function commercial oxygen reduction reaction/oxygen evolution reaction catalysts for increasing their activity and stability. However, the high formation energy of metal defects poses a challenge to the development of strategies to precisely control the selectivity during metal defect formation. Here, density functional theory calculations are used to demonstrate that altering the pathway of metal defect formation releases metal atoms as metal chlorides, which effectively reduces the formation energy of defects.
View Article and Find Full Text PDFAs a plant-specific transcription factor, lateral organ boundaries domain (LBD) protein was reported to regulate plant growth and stress response, but the functional research of subfamily II genes is limited. SlMYC2, a master regulator of Jasmonic acid response, has been found to exhibit high expression levels in fruit and has been implicated in the regulation of fruit ripening and resistance to Botrytis. However, its role in fruit expansion remains unknown.
View Article and Find Full Text PDFPurpose: Oral submucous fibrosis (OSF) is a common chronic condition with poor prognosis, and existing therapies for OSF are limited in effectiveness. This study was designed to explore the role of miR-497 in arecoline (AR)-induced OSF.
Materials And Methods: After miR-497 was silenced or overexpressed in buccal mucosa fibroblasts (BMFs), different concentrations of AR (5-200 μg/ml) were applied to incubate BMFs, and 50 μg/ml of AR was chosen for subsequent experiments.