Publications by authors named "Junxin Aw"

Emergence of antibiotic bacterial resistance has caused serious clinical issues worldwide due to increasingly difficult treatment. Development of a specific approach for selective visualization of resistant bacteria will be highly significant for clinical investigations to promote timely diagnosis and treatment of bacterial infections. In this article, we present an effective method that not only is able to selectively recognize drug resistant AmpC β-lactamases enzyme but, more importantly, is able to interact with bacterial cell wall components, resulting in a desired localization effect on the bacterial surface.

View Article and Find Full Text PDF

Correction for 'Enzyme-responsive reporter molecules for selective localization and fluorescence imaging of pathogenic biofilms' by Junxin Aw et al., Chem. Commun.

View Article and Find Full Text PDF

In general, effective clinical treatment demands precision medicine, which requires specific perturbation to disease cells with no damage to normal tissue. Thus far, guaranteeing that selective therapeutic effects occur only at targeted disease areas remains a technical challenge. Among the various endeavors to achieve such an outcome, strategies based on light-controlled therapies have received special attention, mostly due to their unique advantages, including the low-invasive property and the capability to obtain spatial and temporal precision at the targeted sites via specific wavelength light irradiation.

View Article and Find Full Text PDF

Pathogenic bacteria and their biofilm formation are responsible for a broad spectrum of microbial infections. A novel enzyme-responsive reporter molecule (ERM-1), which can specifically recognize AmpC β-lactamase (Bla) in drug resistant bacteria, has been developed to enable the selective localization of biofilms.

View Article and Find Full Text PDF

The development of precision nanomedicines to direct nanostructure-based reagents into tumour-targeted areas remains a critical challenge in clinics. Chemical reaction-mediated localization in response to tumour environmental perturbations offers promising opportunities for rational design of effective nano-theranostics. Here, we present a unique microenvironment-sensitive strategy for localization of peptide-premodified upconversion nanocrystals (UCNs) within tumour areas.

View Article and Find Full Text PDF

Enzyme-responsive, hybrid, magnetic silica nanoparticles have been employed for multifunctional applications in selective drug delivery and intracellular tumor imaging. In this study, doxorubicin (Dox)-conjugated, enzyme-cleavable peptide precursors were covalently tethered onto the surface of uniform silica-coated magnetic nanoparticles through click chemistry. This enzyme-responsive nanoparticle conjugate demonstrated highly efficient Dox release upon specific enzyme interactions in vitro.

View Article and Find Full Text PDF