Individuals with type 2 diabetes (T2D) and obesity have a higher risk of developing Alzheimer disease (AD), and increasing evidence indicates a link between impaired immune signaling pathways and the development of AD. However, the shared cellular mechanisms and molecular signatures among these 3 diseases remain unknown. The purpose of this study was to uncover similar molecular markers and pathways involved in obesity, T2D, and AD using bioinformatics and a network biology approach.
View Article and Find Full Text PDFErythropoietin-producing hepatocellular carcinoma A3 (EphA3) is a member of the largest subfamily of tyrosine kinase receptors-Eph receptors. Previous studies have shown that EphA3 is associated with tissue development. Recently, we have found that the expression of EphA3 is elevated in the hypothalamus of mice with diet-induced obesity (DIO).
View Article and Find Full Text PDFAims: Exosomes are a subpopulation of extracellular vesicles (EV) derived from multivesicular body (MVB) that transmit various cellular molecular constituents, including long noncoding RNAs (lncRNAs), to promote intercellular communication. Our aim was to investigate the function and mechanism of exosomal LINC00355 in gastric cancer cells.
Main Methods: Exosomal levels of LINC00355 in GC patients and healthy controls were measured by RT-qPCR.
The resistance to cisplatin, the most common platinum chemotherapy drug, may confine the efficacy of treatment in epithelial ovarian cancer patients. Aberrant expression of inhibitor of apoptosis proteins set the stage for resistance to cisplatin in EOC; besides, chemosensitivity in EOC can be chalked up to dysregulation of specific miRNAs. Herein, we investigated whether there is a potential correlation between miR-874-3p and the X-chromosome-linked inhibitor of apoptosis, a member of the IAP protein family in cisplatin-resistant EOC cells.
View Article and Find Full Text PDFProlonged obesity is associated with cerebrovascular dysfunction; however, the underlying mechanisms remain largely unclear. In the present study, using a prolonged obesity mouse model that suffers from basilar artery (BA) abnormalities, we find that microglial transforming growth factor β-activated kinase 1 (Tak1) is over-activated in the brainstem. Both pharmacological inhibition primarily in the brainstem and genetic microglia-selective deletion of Tak1 ameliorated BA vascular dysfunction.
View Article and Find Full Text PDFNeuroligins (NLGs) are postsynaptic adhesion molecules known to play essential roles in synapse development and maturation, but their effects on synaptic plasticity at mature synapses remain unclear. In this study, we investigate the involvement of NLG1 in hippocampal long-term depression (LTD), a key form of long lasting synaptic plasticity, critical for memory formation and brain disorders, by using mice deficient in the expression of NLG1. We find that although NLG1 homozygous (NLG1-/-) mice show no impairments in either NMDA receptor- (NMDAR-LTD) or metabotropic glutamate receptor-dependent LTD (mGluR-LTD), the heterozygous (NLG1+/-) mice are significantly altered in both forms of LTD characterized by the absence of NMDAR-LTD but enhanced mGluR-LTD.
View Article and Find Full Text PDFIn the version of this article initially published, the wrong version of Supplementary Fig. 10 was posted and the city for affiliation 4, the Co-innovation Center of Neuroregeneration, Nantong University, was given as Nanjing instead of Nantong. The errors have been corrected in the HTML and PDF versions of the article.
View Article and Find Full Text PDFLong-term potentiation (LTP) and depression (LTD) at glutamatergic synapses are intensively investigated processes for understanding the synaptic basis for learning and memory, but the underlying molecular mechanisms remain poorly understood. We have made three mouse lines where the C-terminal domains (CTDs) of endogenous AMPA receptors (AMPARs), the principal mediators of fast excitatory synaptic transmission, are specifically exchanged. These mice display profound deficits in synaptic plasticity without any effects on basal synaptic transmission.
View Article and Find Full Text PDFThe timing of sleep is tightly governed by the circadian clock, which contains a negative transcriptional feedback loop and synchronizes the physiology and behavior of most animals to daily environmental oscillations. However, how the circadian clock determines the timing of sleep is largely unclear. In vertebrates and invertebrates, the status of sleep and wakefulness is modulated by the electrical activity of pacemaker neurons that are circadian regulated and suppressed by inhibitory GABAergic inputs.
View Article and Find Full Text PDFIn the brain, gene expression driven by learning-associated neuronal activities is critical for the formation of long-term memories. However, the signaling machinery mediating neuronal activity-induced gene expression, especially the rapid transcription of immediate-early genes (IEGs) remains unclear. Cyclin-dependent kinases (Cdks) are a family of serine/threonine kinases that have been firmly established as key regulators of transcription processes underling coordinated cell cycle entry and sequential progression in nearly all types of proliferative cells.
View Article and Find Full Text PDFRenpenning syndrome is a group of X-linked intellectual disability syndromes caused by mutations in human polyglutamine-binding protein 1 (PQBP1) gene. Little is known about the molecular pathogenesis of the various mutations that cause the notable variability in patients. In this study, we examine the cellular and synaptic functions of the most common mutations found in the patients: c.
View Article and Find Full Text PDFPAK1 inhibitors are known to markedly improve social and cognitive function in several animal models of brain disorders, including autism, but the underlying mechanisms remain elusive. We show here that disruption of PAK1 in mice suppresses inhibitory neurotransmission through an increase in tonic, but not phasic, secretion of endocannabinoids (eCB). Consistently, we found elevated levels of anandamide (AEA), but not 2-arachidonoylglycerol (2-AG) following PAK1 disruption.
View Article and Find Full Text PDFNeuroligin (NLG) 1 is important for synapse development and function, but the underlying mechanisms remain unclear. It is known that at least some aspects of NLG1 function are independent of the presynaptic neurexin, suggesting that the C-terminal domain (CTD) of NLG1 may be sufficient for synaptic regulation. In addition, NLG1 is subjected to activity-dependent proteolytic cleavage, generating a cytosolic CTD fragment, but the significance of this process remains unknown.
View Article and Find Full Text PDFEpithelioid hemangioendothelioma (EHE) is a rare tumor of the urinary system. Only three cases of EHE of the bladder have been reported to date, and the biological properties of the tumor in this location remain poorly characterized. We report a case of primary EHE of the urinary bladder in a 58-year-old woman who was treated by transurethral resection and review the existing literature on the diagnosis and treatment of EHE of the bladder.
View Article and Find Full Text PDFZhonghua Gan Zang Bing Za Zhi
November 2013