Publications by authors named "Junwen Peng"

Immunotherapy targeting programmed cell death-1 (PD-1) and PD-L1 immune checkpoints has reshaped treatment paradigms across several cancers, including breast cancer. Combining PD-1/PD-L1 immune checkpoint blockade (ICB) with chemotherapy has shown promising efficacy in both early and metastatic triple-negative breast cancer, although only a subset of patients experiences durable responses. Identifying responders and optimizing immune drug selection are therefore critical.

View Article and Find Full Text PDF

This review compares the efficacy of Uterine Artery Embolization (UAE) and Myomectomy (MYO) in managing symptomatic Uterine Fibroids (UFs) in women who do not want hysterectomy. A meta-analysis was performed on all available studies that evaluated the relative benefits and harms of MYO and UEA for the management of patients suffering from UFs. Outcomes evaluated reintervention, UFs scores for quality of life (QOL) and symptom severity, and other complications.

View Article and Find Full Text PDF

There is no definitive approach for assessing mesenteric ischemia and determining the optimal timing for endovascular intervention in the management of spontaneous isolated dissection of the superior mesenteric artery (SISMAD). A 56-year-old male with acute abdominal pain was diagnosed with SISMAD. After evaluating mesenteric ischemia through mesenteric fractional flow reserve (FFR), FFR was 0.

View Article and Find Full Text PDF

A novel nanocellulose/carbon dots hydrogel (NCH) was fabricated using cellulose nanofibrils (CN), carbon dots (CD) and zinc oxide (ZnO)/silver bromide (AgBr) nanocomposite, where CD enhanced amino group-induced adsorption of hexavalent chromium (Cr(VI)) and promoted the photocatalytic properties of ZnO/AgBr nanocomposite via the transfer of photogenerated electrons, resulting in enhanced efficiency in the removal of Cr(VI) from aqueous solution. The structure, morphology, and physicochemical properties of the prepared NCH were characterized, with the results of adsorption and photocatalysis experiments showing the maximum theoretical adsorption capacity of the NCH to be 315 mg/g, 219 times that of the ZnO/AgBr nanocomposite; the apparent removal rate constant of the NCH was 0.0319 min, 11.

View Article and Find Full Text PDF

Hydrogel, a common carrier of photocatalyst that suffers from compromised catalytic efficiency, is still far from practical application. Herein, based on "computer chip-inspired design", a novel nanocellulose/carbon dots hydrogel (NCH) was fabricated as superior intensifier instead of common carrier of sodium titanate nanofibre (STN), where carbon dots (CDs) enhanced amino group-induced adsorption for Cr(VI), promoted photocatalytic properties of STN via transferring the photogenerated electron-hole pairs and improved amino group-induced desorption for reduced product (Cr(III)) via electrostatic repulsion, showing an efficiency of 1 + 1 > 2. Adsorption and photocatalysis experiments demonstrated superior removal performance of the NCH incorporating STN, as shown by theoretical maximum adsorption capacity of 425.

View Article and Find Full Text PDF

Jaranol has shown a wide range of pharmacological activities; however, no study has yet examined toxicity. The study aimed to investigate the oral acute and sub-acute toxicity of jaranol in mice. The acute toxicity was determined by a single oral dose of jaranol (2000 mg/kg).

View Article and Find Full Text PDF

Chromium pollution is a major environmental concern; thus, effective and multifunctional adsorbents for removing the Cr(VI) ion are urgently needed. A fluorescent nanocellulose-based hydrogel (FNH) incorporating titanate nanofibers (TNs) was developed for the sorption and detection of Cr(VI) ion. The chemical and physical structures of the hydrogels, as well as their sorption and detection properties, were studied.

View Article and Find Full Text PDF

A novel fluorescent lignin-based hydrogel with cellulose nanofibers and carbon dots (CDs) was synthesized for the high-value utilization of lignin and control of hexavalent chromium (Cr(VI)). Its chemical and physical structure was characterized, and its Cr(VI) sorption performance was evaluated. The results demonstrated that 3D porous structures were constructed in this hydrogel.

View Article and Find Full Text PDF

The detection resolution of a giant magneto-impedance (GMI) sensor is mainly limited by its equivalent input magnetic noise. The noise characteristics of a GMI sensor are evaluated by noise modeling and simulation, which can further optimize the circuit design. This paper first analyzes the noise source of the GMI sensor.

View Article and Find Full Text PDF

Developing efficient alternatives to the widely used Pt cocatalyst in photocatalytic HO splitting is of great importance in view of large-scale production of clear H energy. Herein, we report the facile synthesis of NiCoS and its first use as a highly active and cost-affordable cocatalyst to boost visible light H generation with the CdS semiconductor. The synthesized NiCoS/CdS composite materials are fully characterized by various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-Vis diffusion reflectance spectroscopy (DRS), and N adsorption measurements.

View Article and Find Full Text PDF

The nanostructured CePO4 with monoclinic phase was controllably synthesized through a low temperature hydrothermal route by varying the reactant PO4(3-)/Ce(3+) molar ratio. The structures, morphologies, sizes and luminescence properties of the products were studied by XRD, FE-SEM, DSC-TG and photoluminescence spectra. With the PO4(3-)/Ce(3+) molar ratios increased, the synthesis temperature of as-synthesized monoclinic CePO4 was decreased, and the morphologies underwent the evolution from the rod-like nano-structures to the flower-like nanoclusters.

View Article and Find Full Text PDF