SBS (styrene-butadiene-styrene block copolymer) is a thermoplastic elastomer with properties most similar to rubber. SBS asphalt modifier is mainly composed of a styrene-butadiene-styrene block copolymer with a certain amount of additives and stabilizers. SBS-modified asphalt binder has always been the most commonly used pavement material both domestically and internationally.
View Article and Find Full Text PDFis an invasive fungus that causes both acute and chronic infections, especially in immunocompromised patients. Owing to the increase in the prevalence of drug-resistant pathogenic fungi and the limitations of current treatment strategies, drug repositioning has become a feasible strategy to accelerate the development of new drugs. In this study, the minimum inhibitory concentration of vitamin D (VD) against was found to be 0.
View Article and Find Full Text PDFOropharyngeal candidiasis (OPC), which has a high incidence in immunocompromised and denture stomatitis patients, is commonly caused by Candida albicans infection and in some cases develops into disseminated candidiasis throughout the throat and esophagus, resulting in high mortality. New drugs are needed to combat OPC because of the limited treatment options currently available and increasing resistance to existing drugs. Here, we confirmed that riboflavin (RF), a cofactor of flavin adenine mononucleotide and flavin adenine dinucleotide, has broad-spectrum anti- activity.
View Article and Find Full Text PDFThe incidence of intra-abdominal candidiasis (IAC), characterized by high morbidity and mortality, has become a serious concern. The limitations of current antifungal drugs on the market underscores the importance of the development of novel antifungal agents. In the present study, the antifungal activity of vitamin D (VD) against various Candida species was investigated.
View Article and Find Full Text PDFTo resolve the growing problem of drug resistance in the treatment of bacterial and fungal pathogens, specific cellular targets and pathways can be used as targets for new antimicrobial agents. Endogenous riboflavin biosynthesis is a conserved pathway that exists in most bacteria and fungi. In this review, the roles of endogenous and exogenous riboflavin in infectious disease as well as several antibacterial agents, which act as analogues of the riboflavin biosynthesis pathway, are summarized.
View Article and Find Full Text PDF