In this study, a series of ladder-like polysiloxanes are synthesized by introducing double-chain Si-O-Si polymer as the backbone and the carbazole and triphenylphosphine oxide with high triplet energy as side groups. The ladder-like structures of polysiloxanes are achieved through a controlled polymerization method that involves the monomer self-assembly and subsequent surface-restricted solid-phase in situ condensation through freeze-drying. The introduction of siloxane improves thermal stability of the polymers and inhibits the conjugation of the polymers between the side groups, leading to an increase in the triplet energy level.
View Article and Find Full Text PDFMacromol Rapid Commun
February 2021
Anisotropic 1D nanostructures with high surface-area-to-volume ratio display the enhanced optoelectronic properties of light-emitting compounds compared to bulk or 2D systems. To study the effect of nanometer-constrained space on photoluminescent behavior of thermally activated delayed fluorescence (TADF) polymeric emitters, electrospinning technique is used to produce nanofibers of TADF emitters. Herein, two TADF polymer (P1 and P3) nanofibers with 90% polyacrylonitrile (PAN) are fabricated and their photophysical properties are studied and compared with their spin-coated film counterparts.
View Article and Find Full Text PDFWe designed and synthesized a dibenzothiphene dioxide-based homopolysiloxane, PDBTSi, and a carbazole-dibenzothiophene dioxide alternating copolysiloxane, PCzSi-alt-PDBTSi, respectively. Both PDBTSi and PCzSi-alt-PDBTSi possess an improved solubility, good film-forming ability and extremely high thermal stability due to introduction of polysiloxane main chains. Meanwhile, PDBTSi and PCzSi-alt-PDBTSi exhibit high triplet energy levels of 2.
View Article and Find Full Text PDFThe synthesis and characterization is reported of an efficient polysiloxane derivative containing the 1,3-bis(9-carbazolyl)benzene (mCP) moiety as a pendant unit on the polysiloxane backbone. In comparison with mCP, the mCP-polysiloxane hybrid (PmCPSi) has significantly improved thermal and morphological stabilities with a high decomposition temperature (Td = 523 °C) and glass transition temperature (Tg = 194 °C). The silicon-oxygen linkage of PmCPSi prevents intermolecular π-stacking and ensures a high triplet energy level (ET = 3.
View Article and Find Full Text PDFThe structure evolution of P3HT thin films on Si wafer and PVPh covered Si wafer during heating, thermal annealing, and melt recrystallization processes has been studied in detail using X-ray analysis techniques. The effect of substrate on the crystallization behavior and interface structure of P3HT films was explored. For the P3HT films deposited on the Si substrate, it was found that the stability of P3HT crystals is orientation dependent.
View Article and Find Full Text PDFBiotechnol Appl Biochem
October 2015
Porous monodisperse chitosan microspheres were synthesized for enzyme immobilization. The microspheres were prepared using microchannels and modified with glutaraldehyde. The microspheres had a mean diameter of 495 µm; the polydispersity indices were less than 0.
View Article and Find Full Text PDF