Background: Melanoma is a highly invasive skin cancer with limited treatment strategies. Bupivacaine, a commonly used local anesthetic recognized for its safety, has shown promise in combating tumors. 3'-phosphoadenosine 5'-phosphosulfate synthase 2 (PAPSS2) is a key enzyme in the sulfation process and is associated with the development and metastasis of various tumors.
View Article and Find Full Text PDFPlasma membranes not only maintain the intracellular microenvironment through their phospholipid bilayer but also eliminate exogenous compounds outside the cell membranes. Most drugs especially with high polarity are prevented from entering into cells to exert their effects. Therefore, it is of great significance to design effective drug carriers with a penetrating ability toward plasma membranes.
View Article and Find Full Text PDFThe HIV-1 envelope is a heavily glycosylated class 1 trimeric fusion protein responsible for viral entry into CD4 immune cells. Developing neutralizing antibodies against the specific envelope glycans is an alternative method for antiviral therapies. This work presents the first-ever development and characterization of artificial neutralizing antibodies using molecular imprinting technology to recognize and bind to the envelope protein of HIV-1.
View Article and Find Full Text PDFMolecular imprinting polymers (MIPs) are synthetic receptors as biomimetic materials for various applications ranging from sensing to separation and catalysis. However, currently existing MIPs are stuck to some of the issues including the longer preparation steps and poor performance. In this report, a facile and one-pot strategy by integrating the in-situ growth of magnetic nanoparticles and reversed phase microemulsion oriented molecularly imprinting strategy to develop magnetic molecular imprinted nanocomposites was proposed.
View Article and Find Full Text PDFPhospholipids, as fundamental building blocks of the cell membrane, play important roles for molecule transportation, cell recognition, etc. However, due to the structural diversity and amphipathic nature, there are few methods for the specific recognition of lipids as compared to other biomolecules such as proteins and glycans. Herein, we developed a molecular imprinting strategy for controllable imprinting toward the polar head of phospholipid exposed on the surface of cellular membranes for recognition.
View Article and Find Full Text PDFPhosphorylation is one of the most important post-translational modifications of proteins, but due to the low abundance of phosphopeptides, enrichment is an essential step before mass spectrometric analysis. Although there are a number of enrichment methods developed targeting different forms of proteins phosphorylations, there are few reports on specific recognition and capture of single phosphopeptide. Herein, based on the advantages of dual affinity of TiO and urea to a phosphate group and molecular imprinting towards the peptide sequence, the precise recognition of intact phosphorylated peptides was successfully achieved.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
February 2021
Surface coatings are extensively applied on biomedical devices to provide protection against biofouling and infections. However, most surface coatings prevent both bacteria and cells interactions with the biomaterials, limiting their uses as implants. Furthermore, damage to the surface such as scratches and abrasions can happen during transport and clinical usage, resulting in the loss of antibacterial property.
View Article and Find Full Text PDFDielectric metasurfaces, which are capable of manipulating incident light, have been a novel branch of flat optics. This modulation ability is realized by nanostructures with space-variant geometrical parameters such as height and diameter. Therefore, accurate profile measurement of metasurfaces is of great importance.
View Article and Find Full Text PDFTyrosine phosphorylation regulates the upstream signaling pathway but accounts for less than 0.1% of total phosphorylation in human cells. Herein, molecularly imprinted mesoporous materials were first synthesized to recognize the phosphorylated tyrosine residue from other phosphorylated residues.
View Article and Find Full Text PDF