Publications by authors named "Junsun Kim"

Given the growing interest in molecular diagnosis, highly extensive and selective detection of genetic targets from a very limited amount of samples is in high demand. We demonstrated the highly sensitive and multiplexed one-step RT-qPCR platform for RNA analysis using microparticles as individual reactors. Those particles are equipped with a controlled release system of thermo-responsive materials, and are able to capture RNA targets inside.

View Article and Find Full Text PDF

Here we report a novel method of microRNA (miRNA) profiling with particle-based multiplex quantitative reverse transcription polymerase chain reaction (RT-qPCR). To achieve target-specific reaction in a particle, the stem-loop RT primer and forward primer for each target miRNA were chemically immobilized to the particle. Target-specific cDNA synthesis proceeds with the stem-loop RT primer and then qPCR subsequently proceeds with the forward primer to rapidly achieve a quantitative result.

View Article and Find Full Text PDF

Rapid and simple detection of RNA targets is in high demand due to the growing threat of pandemic viruses. One-step real-time, reverse transcription-polymerase chain reaction (One-step RT-qPCR) using a controlled release system of thermo-responsive materials is developed in this paper to enable high-fidelity RNA analysis as suppressing by-products. The nanocapsules, consisting of upper critical solution temperature (UCST) material and PCR primers, carry or release the primers depending upon the temperature.

View Article and Find Full Text PDF

Intravascular optical coherence tomography (IVOCT) lumen-based computational flow dynamics (CFD) enables physiologic evaluations such as of the fractional flow reserve (FFR) and wall sheer stress. In this study, we developed an accurate, time-efficient method for extracting lumen contours of the coronary artery. The contours of cross-sectional images containing wide intimal discontinuities due to guide wire shadowing and large bifurcations were delineated by utilizing the natural longitudinal lumen continuity of the arteries.

View Article and Find Full Text PDF

Real-time PCR, also called quantitative PCR (qPCR), has been powerful analytical tool for detection of nucleic acids since it developed. Not only for biological research but also for diagnostic needs, qPCR technique requires capacity to detect multiple genes in recent years. Solid phase PCR (SP-PCR) where one or two directional primers are immobilized on solid substrates could analyze multiplex genetic targets.

View Article and Find Full Text PDF

Quantitative polymerase chain reaction (qPCR) renders profiling of genes of interest less time-consuming and cost-effective. Recently, multiplex profiling of miRNAs has enabled identifying or investigating predominant miRNAs for various diseases such as cancers and neurodegenerative diseases. Conventional multiplex qPCR technologies mostly use colorimetric measurements in solution phase, yet not only suffer from limited multiplexing capacity but also require target-screening processes due to non-specific binding between targets and primers.

View Article and Find Full Text PDF

The early diagnosis of pathogenic bacteria is significant for bacterial identification and antibiotic resistance. Implementing rapid, sensitive, and specific detection, molecular diagnosis has been considered complementary to the conventional bacterial culture. Composite microparticles of a primer-immobilized network (cPIN) are developed for multiplex detection of pathogenic bacteria with real-time polymerase chain reaction (qPCR).

View Article and Find Full Text PDF

Multiplex quantitative real-time PCR (qPCR), which measures multiple DNAs in a given sample, has received significant attention as a mean of verifying the rapidly increasing genetic targets of interest in single phenotype. Here we suggest a readily extensible qPCR for the expression analysis of multiple microRNA (miRNA) targets using microparticles of primer-immobilized networks as discrete reactors. Individual particles, 200~500 μm in diameter, are identified by two-dimensional codes engraved into the particles and the non-fluorescent encoding allows high-fidelity acquisition of signal in real-time PCR.

View Article and Find Full Text PDF