Publications by authors named "Junsong Mou"

Bacterial enzymes with different subcellular localizations play a critical ecological role in biogeochemical processing. However, precisely quantifying enzymes localized at certain subcellular levels, such as extracellular enzymes, has not yet been fully realized due to the complexity and dynamism of the bacterial outer membrane. Here we present a magneto-controlled potentiometric sensing platform for the specific detection of extracellular enzymatic activity.

View Article and Find Full Text PDF

Phenotypic antimicrobial susceptibility testing enables reliable antibiotic screening but requires multiple strategies to identify each phenotypic change induced by different bactericidal mechanisms. Bacteria apoptosis with typical phenotypic features has never been explored for antibiotic screening. Herein, we developed an antibiotic screening method based on the measurement of antibiotic-induced phosphatidylserine (PS) exposure of apoptotic bacteria.

View Article and Find Full Text PDF

Modern potentiometric sensors based on polymeric membrane ion-selective electrodes (ISEs) have achieved new breakthroughs in sensitivity, selectivity, and stability and have extended applications in environmental surveillance, medical diagnostics, and industrial analysis. Moreover, nonclassical potentiometry shows promise for many applications and opens up new opportunities for potentiometric biosensing. Here, we aim to provide a concept to summarize advances over the past decade in the development of potentiometric biosensors with polymeric membrane ISEs.

View Article and Find Full Text PDF

Bioelectronic sensors that report charge changes of a biomolecule upon target binding enable direct and sensitive analyte detection but remain a major challenge for potentiometric measurement, mainly due to Debye Length limitations and the need for molecular-level platforms. Here, we report on a magneto-controlled potentiometric method to directly and sensitively measure the target-binding induced charge change of DNA aptamers assembled on magnetic beads using a polymeric membrane potentiometric ion sensor. The potentiometric responses of the negatively charged aptamer, serving as a receptor and reporter, were dynamically controlled and modulated by applying a magnetic field.

View Article and Find Full Text PDF

In this paper, a high-performance enzyme cascade bio-platform has been developed for biosensing by combining MOFs-based nanozyme and natural enzymes. Firstly, a novel porous mixed bi-metal oxide (MnCoO) derived from MOF with rod-like nanostructures was synthesized. Based on this, the nanozyme of bovine serum albumin-Pt nanoparticles@mesoporous MnCoO (BSA-PtNP@MnCoO) was successfully synthesized and used to construct enzyme cascade bio-platform.

View Article and Find Full Text PDF

A simple homogeneous electrochemical aptasensor was designed by using target-responsive substrate releasing from aptamer-gated zeolitic imidazolate framework-8 (ZIF-8)-derived porous carbon nanocontainer. The nanocontainer (Z-700) was prepared by calcination of ZIF-8 at 700 °C. Z-700 had great biocompatibility, high surface areas and pore volume, especially the graphene-like π-rich structure, which was beneficial for adsorbing aptamer easily.

View Article and Find Full Text PDF

Nanozymes are a class of nanomaterials with enzyme-like activities that have been extensively studied for their possibilities and superiorities over natural enzymes. Intelligent design and fabrication of a nanozyme platform with highly efficient and stable tandem enzyme characteristics is necessary. Herein, a nanozyme cascade promoting bioplatform based on protein/bimetallic nanoparticles attached to ZIF-derived multilayer N-doped carbon nanosheets is proposed.

View Article and Find Full Text PDF