Publications by authors named "Junrui Yu"

Computational approaches employed for predicting potential microbe-disease associations often rely on similarity information between microbes and diseases. Therefore, it is important to obtain reliable similarity information by integrating multiple types of similarity information. However, existing similarity fusion methods do not consider multi-order fusion of similarity networks.

View Article and Find Full Text PDF

[S U M M A R Y] Many miRNA-disease association prediction models incorporate Gaussian interaction profile kernel similarity (GIPS). However, the GIPS fails to consider the specificity of the miRNA-disease association matrix, where matrix elements with a value of 0 represent miRNA and disease relationships that have not been discovered yet. To address this issue and better account for the impact of known and unknown miRNA-disease associations on similarity, we propose a method called vector projection similarity-based method for miRNA-disease association prediction (VPSMDA).

View Article and Find Full Text PDF

Most existing graph neural network-based methods for predicting miRNA-disease associations rely on initial association matrices to pass messages, but the sparsity of these matrices greatly limits performance. To address this issue and predict potential associations between miRNAs and diseases, we propose a method called strengthened hypergraph convolutional autoencoder (SHGAE). SHGAE leverages multiple layers of strengthened hypergraph neural networks (SHGNN) to obtain robust node embeddings.

View Article and Find Full Text PDF

Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are associated with various complex human diseases. They can serve as disease biomarkers and hold considerable promise for the prevention and treatment of various diseases. The traditional random walk algorithms generally exclude the effect of non-neighboring nodes on random walking.

View Article and Find Full Text PDF

Recent studies have revealed that long noncoding RNAs (lncRNAs) are closely linked to several human diseases, providing new opportunities for their use in detection and therapy. Many graph propagation and similarity fusion approaches can be used for predicting potential lncRNA-disease associations. However, existing similarity fusion approaches suffer from noise and self-similarity loss in the fusion process.

View Article and Find Full Text PDF

Bovine serum albumin (BSA) was complexed with a hydrophobic ionic liquid polymer (PIL) electrostatic interaction to fabricate a carbon precursor. Then, a novel nitrogen (N) and sulfur (S) codoped micro-/mesoporous carbon (NSPC) was obtained direct carbonization of the interpolyelectrolyte BSA@PIL complex. The newly developed NSPC materials exhibited excellent HER/OER electrocatalytic activity and stability, as well as outstanding capacitance performance.

View Article and Find Full Text PDF