The osmotic energy, an abundant renewable energy source, can be directly converted to electricity by nanofluidic devices with ion-selective membranes. 2D nanochannels constructed by nanosheets possess abundant lateral interfacial ion-exchange sites and exhibit great superiority in nanofluidic devices. However, the most accessible orientation of the 2D nanochannels is parallel to the membrane surface, undoubtedly resulting in the conductivity loss.
View Article and Find Full Text PDFLayered MXene nanofluidic membranes still face the problems of low mechanical property, poor ion selectivity, and low output power density. In this work, we successfully constructed heterostructured membranes with the combination of the layered channels of the MXene layer on the top and the nanoscale poly(-phenylene-benzodioxazole) nanofiber (PBONF) layer on the bottom through a stepwise filtration method. The as-prepared MXene/PBONF-50 heterogeneous membrane exhibits high mechanical properties (strength of 221.
View Article and Find Full Text PDFThe adaptability to wide salinities remains a big challenge for artificial nanofluidic systems, which plays a vital role in water-energy nexus science. Here, inspired by euryhaline fish, sandwich-structured nanochannel systems are constructed to realize salinity self-adaptive nanofluidic diodes, which lead to high-performance salinity-gradient power generators with low internal resistance. Adaptive to changing salinity, the pore morphology of one side of the nanochannel system switches from a 1D straight nanochannel (45 nm) to 3D network pores (1.
View Article and Find Full Text PDFThe development of membrane science plays a fundamental role in harvesting osmotic power, which is considered a future clean and renewable energy source. However, the existing designs of the membrane cannot handle the low conversion efficiency and power density. Theory has predicted that the Janus membrane with ionic diode-type current would be the most efficient material.
View Article and Find Full Text PDFThe design and fabrication of a robust nanoporous membrane in large scale is still a challenge and is of fundamental importance for practical applications. Here, a robust three/two-dimensional polymer/graphene oxide heterogeneous nanoporous membrane is constructed in large scale via the self-assembly approach by chemically designing a robust charge-density-tunable nanoporous ionomer with uniform pore size. To obtain a nanoporous polymer that maintains high mechanical strength and promotes multifunctionality, we designed a series of amphiphilic copolymers by introducing a positively charged pyridine moiety into the engineered polymer polyphenylsulfone.
View Article and Find Full Text PDFHeterogeneous membranes composed of asymmetric structures or compositions have enormous potential in sensors, molecular sieves, and energy devices due to their unique ion transport properties such as ionic current rectification and ion selectivity. So far, heterogeneous membranes with 1D nanopores have been extensively studied. However, asymmetric structures with 3D micro-/nanoscale pore networks have never been investigated.
View Article and Find Full Text PDFOchratoxin A (OTA) is one of the most common and dangerous mycotoxins in the world. Previous work indicated that OTA could elicit spontaneous HR-like lesions formation , reactive oxygen species (ROS) play an important role in OTA toxicity, and their major endogenous source is mitochondria. However, there has been no evidence as to whether OTA induces directly PCD in plants until now.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
February 2016
Lipid rafts are microdomains in plasma membrane and can mediate cytotoxicity. In this study, the role of lipid rafts in ochratoxin A-induced toxicity was investigated using Hepatoblastoma Cell Line HepG-2 cells. Disruption of cholesterol-containing lipid rafts enhanced Ochratoxin A (OTA) toxicity, as shown by increased lactate dehydrogenase leakage, increased reactive oxygen species level and reduction of superoxide dismutase activity in a time-dependent manner.
View Article and Find Full Text PDFOTA-producing strain Aspergillus ochraceus induced necrotic lesions, ROS accumulation and defense responses in Arabidopsis . Primary metabolic and defense-related proteins changed in proteomics. Ascorbate-glutathione cycle and voltage-dependent anion-selective channel proteins fluctuated.
View Article and Find Full Text PDFThe polymerase chain reaction (PCR)-based genome walking method has been extensively used to isolate unknown flanking sequences, whereas nonspecific products are always inevitable. To resolve these problems, we developed a new strategy to isolate the unknown flanking sequences by combining A-T linker adapter PCR with inverse PCR (I-PCR) or thermal asymmetric interlaced PCR (TAIL-PCR). The result showed that this method can be efficiently achieved with the flanking sequence from the Arabidopsis mutant and papain gene.
View Article and Find Full Text PDFOchratoxin A (OTA) is one of the most toxic mycotoxins, which is toxic to plants and simulates oxidative stress. Glutathione is an important antioxidant in plants and is closely associated with detoxification in cells. We have previously shown that OTA exposure induces obvious expression differences in genes associated with glutathione metabolism.
View Article and Find Full Text PDFBackground: Ochratoxin A (OTA) is a mycotoxin produced by some Aspergillus and Penicillium species. In this study a strain of Bacillus subtilis was tested for its effects on OTA-producing Aspergillus and OTA degradation. The mechanisms of the effects were also investigated.
View Article and Find Full Text PDFOchratoxin A (OTA) is a mycotoxin that is primarily produced by Aspergillus ochraceus and Penicillium verrucosum. This mycotoxin is a contaminant of food and feedstock worldwide and may induce cell death in plants. To investigate the dynamic growth process of Arabidopsis seedlings in response to OTA stress and to obtain a better understanding of the mechanism of OTA toxicity towards Arabidopsis, a comparative proteomics study using 2-DE and MALDI-TOF/TOF MS/MS was performed.
View Article and Find Full Text PDFToxicol Appl Pharmacol
April 2013
Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition.
View Article and Find Full Text PDFIn this article, we developed a novel PCR method, termed loop-linker PCR, to isolate flanking sequences in transgenic crops. The novelty of this approach is its use of a stem-loop structure to design a loop-linker adapter. The adapter is designed to form a nick site when ligated with restricted DNA.
View Article and Find Full Text PDFOchratoxin A (OTA) is a toxic isocoumarin derivative produced by various species of mould which mainly grow on grain, coffee, and nuts. Recent studies have suggested that OTA induces cell death in plants. To investigate possible mechanisms of OTA phytotoxicity, both digital gene expression (DGE) transcriptomic and two-dimensional electrophoresis proteomic analyses were used, through which 3118 genes and 23 proteins were identified as being up- or down-regulated at least 2-fold in Arabidopsis leaf in response to OTA treatment.
View Article and Find Full Text PDF