Publications by authors named "Junqian Feng"

To elucidate the biological mechanisms driving the growth of various pumpkin varieties to different sizes under identical management conditions while in the same field, the soil microbial community structures in the rhizospheres of giant-pumpkin (GP) and small-pumpkin (SP) varieties were analyzed. The results revealed that a significantly higher abundance of bacterial communities could be detected in the rhizospheres of the giant pumpkin varieties, such as Gemmatimonadota, , , , , , and , than in those of the small-sized pumpkins. Additionally, , , , and were unique dominant soil bacteria genera in the rhizospheres of the giant pumpkins.

View Article and Find Full Text PDF

Two novel fluorescent dyes based on perylene tetracarboxylic diimides and BODIPY were designed and synthesized. Significant features, such as longer wavelength absorption and emission, high fluorescence quantum yields, and strong electron accepting abilities, are observed for these compounds.

View Article and Find Full Text PDF

Three perylene tetracarboxylic diimide (PDI) trimers substituted with different side groups at the bay positions were prepared with the triazine ring as a linkage. The free rotation of C-N-C bonds between the triazine ring and the PDI unit provide these molecules with some flexibility. The UV-vis absorption and fluorescence spectra of these three compounds show different concentration-dependent behaviors, which depend on the side groups at the bay positions.

View Article and Find Full Text PDF

Cyclophanes of perylene tetracarboxylic diimides (PDIs) with different substituents at the bay positions, namely four phenoxy groups at the 1,7-positions (1), four piperidinyl groups at the 1,7-positions (2), and eight phenoxy groups at the 1,6,7,12-positions (3) of the two PDI rings, have been synthesized by the condensation of perylene dianhydride with amine in a dilute solution. These novel cyclophanes were characterized by (1)H NMR spectroscopy, MALDI-TOF mass spectrometry, electronic absorption spectroscopy, and elemental analysis. The conformational isomers of cyclophanes substituted with four piperidinyl groups at the 1,7-positions (2 a and 2 b) were successfully separated by preparative TLC.

View Article and Find Full Text PDF