Spontaneous abortion (SA) is a devastating, but common outcome for expectant parents and their families. However, the mechanism of SA occurrence remains mostly unknown. Herein, we examined human SA villi samples and found decreased N6-methyladenosine (m6A) levels and methyltransferase-like protein 14 (METTL14) expression compared with those in healthy women.
View Article and Find Full Text PDFThe placenta is essential organ for oxygen and nutrient exchange between the mother and the developing fetus. Trophoblast lineage differentiation is closely related to the normal function of the placenta. Trophoblast stem cells (TSCs) can differentiate into all placental trophoblast subtypes and are widely used as in vitro stem cell models to study placental development and trophoblast lineage differentiation.
View Article and Find Full Text PDFAbnormal trophoblast function is associated with diseases such as recurrent spontaneous abortion, pre-eclampsia, and preterm birth, and endangers maternal and fetal health. However, the underlying regulatory mechanisms remain unclear. In this study, we found DOCK1 expression is decreased in the placental villi of patients with recurrent spontaneous abortion, and that its expression determined the invasive properties of extravillous trophoblasts (EVTs), highlighting a previously unknown role of DOCK1 in regulating EVT function.
View Article and Find Full Text PDFN6-methyladenosine (mA) is the most thoroughly studied type of internal RNA modification, as this epigenetic modification is the most abundant in eukaryotic RNAs to date. This modification occurs in various types of RNAs and plays significant roles in dominant RNA-related processes, such as translation, splicing, export and degradation. These processes are catalyzed by three types of prominent enzymes: writers, erasers and readers.
View Article and Find Full Text PDFGranulosa cells (GCs) play a critical role in driving the formation of ovarian follicles and building the cumulus-oocyte complex surrounding the ovum. We are particularly interested in assessing oocyte quality by examining the detailed gene expression profiles of human cumulus single cells. Using single-cell RNAseq techniques, we extensively investigated the single-cell transcriptomes of the cumulus GC populations from two women with normal ovarian function.
View Article and Find Full Text PDF