Publications by authors named "Junmyung Lee"

Interleukin (IL)-32 is produced by T lymphocytes, natural killer cells, monocytes, and epithelial cells. IL-32 induces the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, IL-1β, IL-6, and IL-8, and IL-32 expression is highly increased in rheumatoid arthritis (RA) patients. Enolase-1 (ENO1) is a glycolytic enzyme and the stimulation of ENO1 induces high levels of pro-inflammatory cytokines in concanavalin A (Con A)-activated peripheral blood mononuclear cells (PBMCs) and macrophages in RA patients.

View Article and Find Full Text PDF

Silicon oxycarbide (SiOC) film was etched using a CF₄/CFO/O₂ mixed gas plasma through an inductively coupled plasma etcher. Changes in the dielectric constant and surface chemical bonding properties were investigated using ellipsometry and Fourier transform infrared spectroscopy. Plasma diagnosis was carried out using a double Langmuir probe, ultraviolet detector, and residual gas analyzer.

View Article and Find Full Text PDF

Recent studies show that IL-22, a cytokine produced by activated CD4+ T cells and NK cells, plays a pathogenic role in acute and chronic skin diseases. While IL-22 is produced by immune cells, the expression of IL-22Rα, the functional subunit of IL-22R, is mostly restricted to non-hematopoietic cells in organs such as the skin and pancreas. Although it is well known that ultraviolet B (UVB) radiation induces skin inflammation, there have been no reports regarding the effect of UVB on the expression of IL-22Rα.

View Article and Find Full Text PDF

The investigation of C4F8+O2 feed gas composition on both plasma parameters and plasma treated silicon surface characteristics was carried out. The combination of plasma diagnostics by Langmuir probes and plasma modeling indicated that an increase in O2 mixing ratio results in monotonically decreasing densities of CF(x) (x = 1-3) radicals as well as in non-monotonic behavior of F atom density. The surface characterization by X-ray photoelectron spectroscopy and contact angle measurements showed that the C4F8+O2 mixtures with less than 60% 02 result in modification of Si surfaces due to the deposition of the FC polymer films while the change of O2 mixing ratio in the range of 30%-60% provides an effective adjustment of the surface characteristics such as surface energy, contact angle, etc.

View Article and Find Full Text PDF

An investigation of the etching characteristics and mechanism for both Si and SiO2 in CF4/C4F8/Ar inductively coupled plasmas under a constant gas pressure (4 mTorr), total gas flow rate (40 sccm), input power (800 W), and bias power (150 W) was performed. It was found that the variations in the CF4/C4F8 mixing ratio in the range of 0-50% at a constant Ar fraction of 50% resulted in slightly non-monotonic Si and SiO2 etching rates in CF4-rich plasmas and greatly decreasing etching rates in C4F8-rich plasmas. The zero-dimensional plasma model, Langmuir probe diagnostics, and optical emission spectroscopy provided information regarding the formation-decay kinetics for the plasma active species, along with their densities and fluxes.

View Article and Find Full Text PDF