Publications by authors named "Junmo Kang"

Historically, the central nervous system (CNS) was regarded as 'immune-privileged', possessing its own distinct immune cell population. This immune privilege was thought to be established by a tight blood-brain barrier (BBB) and blood-cerebrospinal-fluid barrier (BCSFB), which prevented the crossing of peripheral immune cells and their secreted factors into the CNS parenchyma. However, recent studies have revealed the presence of peripheral immune cells in proximity to various brain-border niches such as the choroid plexus, cranial bone marrow (CBM), meninges, and perivascular spaces.

View Article and Find Full Text PDF

Poly[(thiophene)-alt-(6,7-difluoro-2(2-hexyldecyloxy)quinoxaline)] (PTQ10) emerges as a promising candidate for donor materials in organic solar cells (OSCs) due to its high efficiency, simplified synthesis, and cost-effectiveness. The acceptor unit of PTQ10 is derived from the alkylation of 5,8-dibromo-6,7-difluoroquinoxaline-2-ol, emphasizing the importance of its economical synthesis for commercial viability. This study investigates triflic acid-assisted regioselective bromination of quinoxaline derivatives and proposes an alternative synthetic pathway for PTQ10.

View Article and Find Full Text PDF

We present a novel synthetic route for the rapid construction of dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]thiadiazoles via NaS-promoted thiophene annulation. This method facilitated the synthesis of D18-Cl polymer, known for its efficacy as a polymer donor in bulk-heterojunction polymer solar cells. Starting from commercially available 4,7-dihalo-5,6-difluorobenzo[c][1,2,5]thiadiazole, various 4,7-dialkynylated compounds were obtained through Sonogashira reaction conditions.

View Article and Find Full Text PDF

All over the world, the critical shortage of face masks has been evident during the COVID-19 outbreak. No specific policy to solve the shortage has been shared among public health scholars and practitioners. Recently, the Korean government implemented noteworthy policies to stabilize the face mask market.

View Article and Find Full Text PDF

Due to the exceptional properties of graphene, numerous possibilities for real applications in various fields have been provided. However, it is a challenge to fabricate bulk graphene materials with properties arising from the nature of individual graphene sheets, and which assemble into monolithic three-dimensional structures. If 3D structured graphene foam were made instead of 2D structured graphene, it is expected that it would be a facile fabrication, with relatively low cost with the possibility of scale-up, and would maintain the intrinsic properties of graphene.

View Article and Find Full Text PDF

A representative mesoporous metal-organic-framework (MOF) material, NU-1000, has been rendered electronically conductive via a robust inorganic approach that permits retention of MOF crystallinity and porosity. The approach is based on condensed-phase grafting of molecular tin species onto the MOF nodes via irreversible reaction with hydroxyl and aqua ligands presented at the node surface, a self-limiting process termed solvothermal installation (of metal ions) in MOFs (SIM, a solution-phase analog of atomic layer deposition in MOFs). Treatment of the modified MOF with aerated steam at 120 °C converts the grafted tin molecules to tetratin(IV)oxy clusters, with the clusters being sited between insulating pairs of zirconia-like nodes (the zirconium component being key to endowing the parent material with requisite chemical and thermal stability).

View Article and Find Full Text PDF

A general self-aligned fabrication scheme is reported here for a diverse class of electronic devices based on van der Waals materials and heterojunctions. In particular, self-alignment enables the fabrication of source-gated transistors in monolayer MoS with near-ideal current saturation characteristics and channel lengths down to 135 nm. Furthermore, self-alignment of van der Waals p-n heterojunction diodes achieves complete electrostatic control of both the p-type and n-type constituent semiconductors in a dual-gated geometry, resulting in gate-tunable mean and variance of antiambipolar Gaussian characteristics.

View Article and Find Full Text PDF

There have been a number of theoretical and experimental studies on tensile properties of carbon nanotubes (CNT), reporting the Young's modulus of the individual CNT up to 1 TPa. Although CNT shows the promise to be used as reinforcement in a high modulus/strength composite material, it exhibits quite disappointing in terms of modulus or strength. Along with recent advance in CNT growth technique, we will be able to directly measure tensile properties of millimeter-long MWCNTs.

View Article and Find Full Text PDF

The decreasing cost of silicon-based photovoltaics has enabled significant increases in solar electricity generation worldwide. Silicon photoanodes could also play an important role in the cost-effective generation of solar fuels, but the most successful methods of photoelectrode passivation and performance enhancement rely on a combination of precious metals and sophisticated processing methods that offset the economic arguments for silicon. Here we show that metal-free carbon-based nanomaterial coatings deposited from solution can protect silicon photoanodes carrying out the oxygen evolution reaction in a range of working environments.

View Article and Find Full Text PDF

This paper describes how delamination-free, hierarchical patterning of graphene can be achieved on prestrained thermoplastic sheets by surface wrinkling. Conformal contact between graphene and the substrate during strain relief was maintained by the presence of a soft skin layer, resulting in the uniform patterning of three-dimensional wrinkles over large areas (>cm). The graphene wrinkle wavelength was tuned from the microscale to the nanoscale by controlling the thickness of the skin layer with 1 nm accuracy to realize a degree of control not possible by crumpling, which relies on delamination.

View Article and Find Full Text PDF

Low-voltage complementary circuits comprising n-type and p-type van der Waals heterojunction vertical field-effect transistors (VFETs) are demonstrated. The resulting VFETs possess high on-state current densities (>3000 A cm(-2) ) and on/off current ratios (>10(4) ) in a narrow voltage window (<3 V).

View Article and Find Full Text PDF

Hanwoo, a Korean native cattle (Bos taurus coreana), has great economic value due to high meat quality. Also, the breed has genetic variations that are associated with production traits such as health, disease resistance, reproduction, growth as well as carcass quality. In this study, next generation sequencing technologies and the availability of an appropriate reference genome were applied to discover a large amount of single nucleotide polymorphisms (SNPs) in ten Hanwoo bulls.

View Article and Find Full Text PDF

Black phosphorus (BP) has recently emerged as a promising narrow band gap layered semiconductor with optoelectronic properties that bridge the gap between semimetallic graphene and wide band gap transition metal dichalcogenides such as MoS2. To date, BP field-effect transistors have utilized a lateral geometry with in-plane transport dominating device characteristics. In contrast, we present here a vertical field-effect transistor geometry based on a graphene/BP van der Waals heterostructure.

View Article and Find Full Text PDF

The recent emergence of a wide variety of two-dimensional (2D) materials has created new opportunities for device concepts and applications. In particular, the availability of semiconducting transition metal dichalcogenides, in addition to semimetallic graphene and insulating boron nitride, has enabled the fabrication of "all 2D" van der Waals heterostructure devices. Furthermore, the concept of van der Waals heterostructures has the potential to be significantly broadened beyond layered solids.

View Article and Find Full Text PDF

Meat and carcass quality attributes are of crucial importance influencing consumer preference and profitability in the pork industry. A set of 400 Berkshire pigs were collected from Dasan breeding farm, Namwon, Chonbuk province, Korea that were born between 2012 and 2013. To perform genome wide association studies (GWAS), eleven meat and carcass quality traits were considered, including carcass weight, backfat thickness, pH value after 24 hours (pH24), Commission Internationale de l'Eclairage lightness in meat color (CIE L), redness in meat color (CIE a), yellowness in meat color (CIE b), filtering, drip loss, heat loss, shear force and marbling score.

View Article and Find Full Text PDF

Gate dielectrics directly affect the mobility, hysteresis, power consumption, and other critical device metrics in high-performance nanoelectronics. With atomically flat and dangling bond-free surfaces, hexagonal boron nitride (h-BN) has emerged as an ideal dielectric for graphene and related two-dimensional semiconductors. While high-quality, atomically thin h-BN has been realized via micromechanical cleavage and chemical vapor deposition, existing liquid exfoliation methods lack sufficient control over h-BN thickness and large-area film quality, thus limiting its use in solution-processed electronics.

View Article and Find Full Text PDF

The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes.

View Article and Find Full Text PDF

Different chemical vapour deposition (CVD) fabrication conditions lead to a wide range of variation in the microstructure and morphologies of carbon nanotubes (CNTs), which actually determine the compressive mechanical properties of CNTs. However, the underlying relationship between the structure/morphology and mechanical properties of CNTs is not fully understood. In this study, we characterized and compared the structural and morphological properties of three kinds of vertically aligned carbon nanotube (VACNT) arrays from different CVD fabrication methods and performed monotonic compressive tests for each VACNT array.

View Article and Find Full Text PDF

The thickness-dependent band structure of MoS2 implies that discontinuities in energy bands exist at the interface of monolayer (1L) and multilayer (ML) thin films. The characteristics of such heterojunctions are analyzed here using current versus voltage measurements, scanning photocurrent microscopy, and finite element simulations of charge carrier transport. Rectifying I-V curves are consistently observed between contacts on opposite sides of 1L/ML junctions, and a strong bias-dependent photocurrent is observed at the junction.

View Article and Find Full Text PDF

Recently, carbon materials such as carbon nanotubes and graphene have been proposed as alternatives to indium tin oxide (ITO) for fabricating transparent conducting materials. However, obtaining low sheet resistance and high transmittance of these carbon materials has been challenging due to the intrinsic properties of the materials. In this paper, we introduce highly transparent and flexible conductive films based on a hybrid structure of graphene and an Ag-grid.

View Article and Find Full Text PDF

Due to their exceptional flexibility and transparency, CVD graphene films have been regarded as an ideal replacement of indium tin oxide for transparent electrodes, especially in applications where electronic devices may be subjected to large tensile strain. However, the search for a desirable combination of stretchability and electrochemical performance of such devices remains a huge challenge. Here, we demonstrate the implementation of a laminated ultrathin CVD graphene film as a stretchable and transparent electrode for supercapacitors.

View Article and Find Full Text PDF

Doping is an efficient way to engineer the conductivity and the work function of graphene, which is, however, limited to wet-chemical doping or metal deposition particularly for n-doping, Here, we report a simple method of modulating the electrical conductivity of graphene by dual-side molecular n-doping with diethylenetriamine (DETA) on the top and amine-functionalized self-assembled monolayers (SAMs) at the bottom. The resulting charge carrier density of graphene is as high as -1.7 × 10(13) cm(-2), and the sheet resistance is as low as ∼86 ± 39 Ω sq(-1), which is believed to be the lowest sheet resistance of monolayer graphene reported so far.

View Article and Find Full Text PDF

A tactile display is an important tool to help humans interact with machines by using touch. In this paper, we present a transparent and stretchable graphene-based actuator for advanced tactile displays. The proposed actuator is composed of transparent and compliant graphene electrodes and a dielectric elastomer substrate.

View Article and Find Full Text PDF

Graphene is a zero band-gap semi-metal with remarkable electromagnetic and mechanical characteristics. This study is the first ever attempt to use graphene in the surface plasmon resonance (SPR) sensor as replacement material for gold/silver. Graphene, comprised of a single atomic layer of carbon, is a purely two-dimensional material and it is an ideal candidate for use as a biosensor because of its high surface-to-volume ratio.

View Article and Find Full Text PDF

The first micrometer-sized graphene flakes extracted from graphite demonstrated outstanding electrical, mechanical and chemical properties, but they were too small for practical applications. However, the recent advances in graphene synthesis and transfer techniques have enabled various macroscopic applications such as transparent electrodes for touch screens and light-emitting diodes (LEDs) and thin-film transistors for flexible electronics in particular. With such exciting potential, a great deal of effort has been put towards producing larger size graphene in the hopes of industrializing graphene production.

View Article and Find Full Text PDF