Publications by authors named "Junmei Xia"

Shellfish poisoning is a common food poisoning. To comprehensively characterize proteome changes in the whole brain due to shellfish poisoning, Tandem mass tag (TMT)-based differential proteomic analysis was performed with a low-dose chronic shellfish poisoning model in mice. A total of 6798 proteins were confidently identified, among which 123 proteins showed significant changes (fold changes of >1.

View Article and Find Full Text PDF

The retrospective detection of organophosphorus nerve agents (OPNAs) exposure has been achieved by the off-site analysis of OPNA-human serum albumin (HSA) adducts using mass spectrometry-based detection approaches. However, few specific methods are accessible for on-site detection. To address this, a novel immunofluorescence microfluidic chip (IFMC) testing system combining europium chelated microparticle (EuCM) with self-driven microfluidic chip assay has been established to unambiguously determine soman (GD) and VX exposure within 20 min, respectively.

View Article and Find Full Text PDF

Ricin is a highly toxic protein toxin that poses a potential bioterrorism threat due to its potency and widespread availability. However, the accurate quantification of ricin through absolute mass spectrometry (MS) using a protein standard absolute quantification (PSAQ) strategy is not widely practiced. This limitation primarily arises from the presence of interchain disulfide bonds, which hinder the production of full-length isotope-labeled ricin as an internal standard (IS) in vitro.

View Article and Find Full Text PDF

We herein report a direct and efficient protocol for phosphorylation of quinoxalines, which employs aerobic oxygen as the green oxidant under catalyst-free conditions. This methodology represents one of the most environmentally friendly and easily handled protocols, providing a series of phosphorylated quinoxalines in good to excellent yields. Control experiments clearly indicated that the reaction followed a dearomatization-rearomatization strategy.

View Article and Find Full Text PDF

Carbamate nerve agents (CMNAs) are a type of lethal cholinesterase inhibitor with one or more quaternary amine centres and aromatic rings. CMNAs have been recently added to the Annex on Chemicals of the Chemical Weapons Convention (CWC) and Schedules of Controlled Chemicals of China. In this study, a rapid, sensitive and selective method was developed for the fluorescence detection of ambenonium chloride (AC) through host-guest and electrostatic dual interactions between AC and cyclodextrin/11-mercaptoundecanoic acid (CD/MUA) dually functionalized gold nanoclusters (AuNCs).

View Article and Find Full Text PDF

Background: As a peptide originally discovered from by mass spectrometry and cDNA sequencing, Ac6.4 contains 25 amino acid residues and three disulfide bridges. Our previous study found that this peptide possesses 80% similarity to MVIIA by BLAST and that MVIIA is a potent and selective blocker of N-type voltage-sensitive calcium channels in neurons.

View Article and Find Full Text PDF

It has been a challenge to achieve rapid, simple, and effective discrimination of organophosphorus nerve agents (typical chemical warfare agents) due to the similar chemical properties of the targets such as sarin, soman, cyclosarin and VX. In this study, we propose a chemiluminescence sensor array that can effectively discriminate organophosphorus nerve agents by organophosphorus-HO reaction, which produces peroxyphosphonate intermediate and regulates the chemiluminescence intensity. A simple chemiluminescence sensor array based on different chemiluminescence characteristics of the four organophosphorus nerve agents in the luminol-HO system and layered double hydroxide-luminol-HO system has been constructed.

View Article and Find Full Text PDF

Type Ⅱ ribosome-inactivating proteins (RIPs) are an important class of protein toxins that consist of A and B chains linked by an interchain disulfide bond. The B-chain with lectin-like activity is responsible for binding to the galactose-containing receptors on eukaryotic cell surfaces, which is essential for A-chain internalization by endocytosis. The A-chain has -glycosidase activity that irreversibly depurinates a specific adenine from 28S ribosomal RNA (28S rRNA) and terminates protein synthesis.

View Article and Find Full Text PDF

Cyanogen chloride (ClCN) has been widely used in industrial production. ClCN is also listed in the Schedule of the Chemical Weapons Convention (CWC). The use of traditional colorimetric analysis or gas chromatography for the detection of ClCN has been characterized by low efficiency and poor sensitivity.

View Article and Find Full Text PDF

Sulfur mustard (SM) is a blister chemical warfare agent with severe cytotoxicity and genotoxicity. It can extensively alkylate important macromolecules in organisms, such as proteins, DNA, and lipids, and produce a series of metabolites, among which the characteristic ones can be used as biomarkers. The exact toxicological mechanisms of SM remain unclear but mainly involve the DNA lesions induced by alkylation and oxidative stress caused by glutathione depletion.

View Article and Find Full Text PDF

Water-soluble and functional copper nanoclusters (CuNCs) were prepared by using folic acid (FA) that serves both as a reducing reagent and a stabilizer. FA also acts as a functional ligand on the surface of the CuNCs, and this can be exploited to target the folate receptor which is over-expressed on the surface of HeLa cells. The FA-modified CuNCs nanoclusters have an average size of ca.

View Article and Find Full Text PDF

A protein-stabilized multifunctional theranostic nanoplatform, gadolinium oxide-gold nanoclusters hybrid (GdO-AuNCs), is constructed for multimodal imaging and drug delivery. The GdO-AuNCs nanohybrid is developed by integrating GdO nanocrystals and gold nanoclusters into bovine serum albumin scaffold as a stabilizer. The nanohybrid exhibits favorable biocompatibility and is capable of enhancing the contrast in magnetic resonance and X-ray computed tomography imaging.

View Article and Find Full Text PDF

Carbon dots are prepared using a green hydrothermal approach with dehydrated shiitake mushroom as the sole carbon source without any additives (these carbon dots are shortly termed as MCDs). Carbonization, surface functionalization and nitrogen doping are involved in the hydrothermal treatment and no further modification or surface passivation is necessary. The derived MCDs are nitrogen-doped, oxygen-rich with hydroxyl, carboxyl and amine groups, with a diameter of ca.

View Article and Find Full Text PDF

Tunable fluorescent emission and applications in both in vitro and in vivo imaging of hydrophobic carbon nanodots (CNDs) with rapid penetration capability are reported. The hydrophobic CNDs are prepared via hydrothermal treatment of ionic liquid 1-ethyl-3-methylimidazolium bromide and exhibit excitation-dependent photoluminescence behavior along with a red-shift in the excitation/emission maxima with concentration. The quantum yields of the as-prepared CNDs are in the range of 2.

View Article and Find Full Text PDF