Publications by authors named "Junlin Xu"

Air filtration has become a desirable route for collecting airborne microbes. However, the potential biotoxicity and sterilization of current air filtration membranes often lead to undesired inactivation of captured microbes, which greatly limits microbial non-traumatic transfer and recovery. Herein, we report a gel-confined phase separation strategy to rationally fabricate a fully bio-based filtration membrane (SGFM) using soluble soybean polysaccharide and gelatin.

View Article and Find Full Text PDF

The advent of single-cell RNA sequencing (scRNA-seq) technology has revolutionized gene expression studies at the single-cell level. However, the presence of technical noise and data sparsity in scRNA-seq often undermines the accuracy of subsequent analyses. Existing methods for denoising and imputing scRNA-seq data often rely on stringent assumptions about data distribution, limiting the effectiveness of data recovery.

View Article and Find Full Text PDF

Drug repositioning, the strategy of redirecting existing drugs to new therapeutic purposes, is pivotal in accelerating drug discovery. While many studies have engaged in modeling complex drug-disease associations, they often overlook the relevance between different node embeddings. Consequently, we propose a novel weighted local information augmented graph neural network model, termed DRAGNN, for drug repositioning.

View Article and Find Full Text PDF

Drug repositioning has emerged as a promising strategy for identifying new therapeutic applications for existing drugs. In this study, we present DRGBCN, a novel computational method that integrates heterogeneous information through a deep bilinear attention network to infer potential drugs for specific diseases. DRGBCN involves constructing a comprehensive drug-disease network by incorporating multiple similarity networks for drugs and diseases.

View Article and Find Full Text PDF

Introduction: The importance of microRNAs (miRNAs) has been emphasized by an increasing number of studies, and it is well-known that miRNA dysregulation is associated with a variety of complex diseases. Revealing the associations between miRNAs and diseases are essential to disease prevention, diagnosis, and treatment.

Methods: However, traditional experimental methods in validating the roles of miRNAs in diseases could be very expensive, labor-intensive and time-consuming.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) is a revolutionary breakthrough that determines the precise gene expressions on individual cells and deciphers cell heterogeneity and subpopulations. However, scRNA-seq data are much noisier than traditional high-throughput RNA-seq data because of technical limitations, leading to many scRNA-seq data studies about dimensionality reduction and visualization remaining at the basic data-stacking stage. In this study, we propose an improved variational autoencoder model (termed DREAM) for dimensionality reduction and a visual analysis of scRNA-seq data.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) is a revolutionary technology to determine the precise gene expression of individual cells and identify cell heterogeneity and subpopulations. However, technical limitations of scRNA-seq lead to heterogeneous and sparse data. Here, we present autoCell, a deep-learning approach for scRNA-seq dropout imputation and feature extraction.

View Article and Find Full Text PDF

The research on microbe association networks is greatly significant for understanding the pathogenic mechanism of microbes and promoting the application of microbes in precision medicine. In this paper, we studied the prediction of microbe-disease associations based on multi-data biological network and graph neural network algorithm. The HMDAD database provided a dataset that included 39 diseases, 292 microbes, and 450 known microbe-disease associations.

View Article and Find Full Text PDF

Cumulative studies have shown that many long non-coding RNAs (lncRNAs) are crucial in a number of diseases. Predicting potential lncRNA-disease associations (LDAs) can facilitate disease prevention, diagnosis and treatment. Therefore, it is vital to develop practical computational methods for LDA prediction.

View Article and Find Full Text PDF

Objective: The results of PD-1/PD-L1 inhibitor combined with chemotherapy for TNBC are controversial. Therefore, a meta-analysis was conducted to evaluate the efficacy and safety after PD-1/PD-L1 inhibitors plus chemotherapy in TNBC patients.

Methods: We systematically searched seven databases and several mainly oncology conferences for prospective clinical trials of chemotherapy combined with immunotherapy to treat TNBC, and we included pathologic complete response (PCR), progression-free survival (PFS), overall survival (OS) and adverse effects as outcome indicators of the study.

View Article and Find Full Text PDF

A single-cell sequencing data set has always been a challenge for clustering because of its high dimension and multi-noise points. The traditional K-means algorithm is not suitable for this type of data. Therefore, this study proposes a Dissimilarity-Density-Dynamic Radius-K-means clustering algorithm.

View Article and Find Full Text PDF
Article Synopsis
  • * The study evaluates nine dropout imputation methods alongside eight clustering methods on 10 different scRNA-seq datasets to determine optimal combinations for improved clustering quality.
  • * Results indicate that imputation methods can enhance clustering and visualization, with performance varying based on dataset size—smaller datasets benefit from one combination, while larger datasets perform best with another.
View Article and Find Full Text PDF

Amid the COVID-19 crisis, we put sizeable efforts to collect a high number of experimentally validated drug-virus association entries from literature by text mining and built a human drug-virus association database. To the best of our knowledge, it is the largest publicly available drug-virus database so far. Next, we develop a novel weight regularization matrix factorization approach, termed WRMF, for in silico drug repurposing by integrating three networks: the known drug-virus association network, the drug-drug chemical structure similarity network, and the virus-virus genomic sequencing similarity network.

View Article and Find Full Text PDF

Knowledge of the interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) is the basis of understanding various biological activities and designing new drugs. Previous computational methods for predicting lncRNA-miRNA interactions lacked for plants, and they suffer from various limitations that affect the prediction accuracy and their applicability. Research on plant lncRNA-miRNA interactions is still in its infancy.

View Article and Find Full Text PDF

MicroRNA (miRNA) is a class of non-coding single-stranded RNA molecules encoded by endogenous genes with a length of about 22 nucleotides. MiRNAs have been successfully identified as differentially expressed in various cancers. There is evidence that disorders of miRNAs are associated with a variety of complex diseases.

View Article and Find Full Text PDF

Drug repositioning is an efficient and promising strategy for traditional drug discovery and development. Many research efforts are focused on utilizing deep-learning approaches based on a heterogeneous network for modeling complex drug-disease associations. Similar to traditional latent factor models, which directly factorize drug-disease associations, they assume the neighbors are independent of each other in the network and thus tend to be ineffective to capture localized information.

View Article and Find Full Text PDF

In silico reuse of old drugs (also known as drug repositioning) to treat common and rare diseases is increasingly becoming an attractive proposition because it involves the use of de-risked drugs, with potentially lower overall development costs and shorter development timelines. Therefore, there is a pressing need for computational drug repurposing methodologies to facilitate drug discovery. In this study, we propose a new method, called DRHGCN (Drug Repositioning based on the Heterogeneous information fusion Graph Convolutional Network), to discover potential drugs for a certain disease.

View Article and Find Full Text PDF

Because of the catastrophic outbreak of global coronavirus disease 2019 (COVID-19) and its strong infectivity and possible persistence, computational repurposing of existing approved drugs will be a promising strategy that facilitates rapid clinical treatment decisions and provides reasonable justification for subsequent clinical trials and regulatory reviews. Since the effects of a small number of conditionally marketed vaccines need further clinical observation, there is still an urgent need to quickly and effectively repurpose potentially available drugs before the next disease peak. In this work, we have manually collected a set of experimentally confirmed virus-drug associations through the publicly published database and literature, consisting of 175 drugs and 95 viruses, as well as 933 virus-drug associations.

View Article and Find Full Text PDF

The outbreak of a novel febrile respiratory disease called COVID-19, caused by a newfound coronavirus SARS-CoV-2, has brought a worldwide attention. Prioritizing approved drugs is critical for quick clinical trials against COVID-19. In this study, we first manually curated three Virus-Drug Association (VDA) datasets.

View Article and Find Full Text PDF

A novel coronavirus, named COVID-19, has become one of the most prevalent and severe infectious diseases in human history. Currently, there are only very few vaccines and therapeutic drugs against COVID-19, and their efficacies are yet to be tested. Drug repurposing aims to explore new applications of approved drugs, which can significantly reduce time and cost compared with drug discovery.

View Article and Find Full Text PDF

The novel coronavirus disease 2019 (COVID-19) pandemic has caused a massive health crisis worldwide and upended the global economy. However, vaccines and traditional drug discovery for COVID-19 cost too much in terms of time, manpower, and money. Drug repurposing becomes one of the promising treatment strategies amid the COVID-19 crisis.

View Article and Find Full Text PDF

Gene coexpression analysis is widely used to infer gene modules associated with diseases and other clinical traits. However, a systematic view and comparison of gene coexpression networks and modules across a cohort of tissues are more or less ignored. In this study, we first construct gene coexpression networks and modules of 52 GTEx tissues and cell lines.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) technologies allow numerous opportunities for revealing novel and potentially unexpected biological discoveries. scRNA-seq clustering helps elucidate cell-to-cell heterogeneity and uncover cell subgroups and cell dynamics at the group level. Two important aspects of scRNA-seq data analysis were introduced and discussed in the present review: relevant datasets and analytical tools.

View Article and Find Full Text PDF