Publications by authors named "Junli Quan"

Late blight has been the most devastating potato disease worldwide. The causal agent, , is notorious for its capability to rapidly overcome host resistance. Changes in the expression pattern and the encoded protein sequences of effector genes in the pathogen are responsible for the loss of host resistance.

View Article and Find Full Text PDF

Along with the well-studied microRNA (miRNA) and small interfering RNA (siRNA) is a new class of transfer RNA-derived small RNA (tsRNA), which has recently been detected in multiple organisms and is implicated in gene regulation. However, while miRNAs and siRNAs are known to repress gene expression through sequence-specific RNA cleavage or translational repression, how tsRNAs regulate gene expression remains unclear. Here we report the identification and functional characterization of tsRNAs in the oomycete pathogen .

View Article and Find Full Text PDF

Oomycete pathogens cause serious damage to a wide spectrum of plants. Although host pathogen recognition via pathogen effectors and cognate plant resistance proteins is well established, the genetic basis of host factors that mediate plant susceptibility to oomycete pathogens is relatively unexplored. Here, we report on RTP1, a nodulin-related MtN21 family gene in Arabidopsis that mediates susceptibility to Phytophthora parasitica.

View Article and Find Full Text PDF

The interaction between Arabidopsis thaliana and the oomycete pathogen Phytophthora parasitica emerges as a model for exploring the molecular basis and evolution of recognition and host defense. Phenotypic variation and genetic analysis is essential to dissect the underlying mechanisms in plant-oomycete interaction. In this study, the reaction phenotypes of 28 A.

View Article and Find Full Text PDF

As the causal agent of late blight on potato, Phytophthora infestans is one of the most destructive plant pathogens worldwide and widely known as the Irish potato famine pathogen. Understanding the genetic structure of P. infestans populations is important both for breeding and deployment of resistant varieties and for development of disease control strategies.

View Article and Find Full Text PDF

Biflagellate zoospores are the major infective agents that initiate plant infection for most Phytophthora species. Once released from sporangia, zoospores swim and use a number of tactic responses to actively target host tissues. However, the molecular mechanisms controlling zoospore development and behaviour are largely unknown.

View Article and Find Full Text PDF

Species of the oomycete genus Phytophthora are destructive pathogens, causing extensive losses in agricultural crops and natural ecosystems. A potential disease control approach is the application of RNA silencing technology which has proven to be effective in improving plant resistance against a wide range of pests including parasitic plants, nematodes, insects and fungi. In this study, we tested the potential application of RNA silencing in improving plant disease resistance against oomycete pathogens.

View Article and Find Full Text PDF

Oomycete pathogens cause severe damage to a wide range of agriculturally important crops and natural ecosystems. They represent a unique group of plant pathogens that are evolutionarily distant from true fungi. In this study, we established a new plant-oomycete pathosystem in which the broad host range pathogen Phytophthora parasitica was demonstrated to be capable of interacting compatibly with the model plant Arabidopsis thaliana.

View Article and Find Full Text PDF