Publications by authors named "Junkyung Kim"

The cerebellar Purkinje cell controlling eyeblinks can learn, remember, and reproduce the interstimulus interval in a classical conditioning paradigm. Given temporally separated inputs, the cerebellar Purkinje cell learns to pause its tonic inhibition of a motor pathway with high temporal precision so that an overt blink occurs at the right time. Most models place the passage-of-time representation in upstream network effects.

View Article and Find Full Text PDF

The development of deep convolutional neural networks (CNNs) has recently led to great successes in computer vision, and CNNs have become de facto computational models of vision. However, a growing body of work suggests that they exhibit critical limitations on tasks beyond image categorization. Here, we study one such fundamental limitation, concerning the judgment of whether two simultaneously presented items are the same or different (SD) compared with a baseline assessment of their spatial relationship (SR).

View Article and Find Full Text PDF

The advent of deep learning has recently led to great successes in various engineering applications. As a prime example, convolutional neural networks, a type of feedforward neural network, now approach human accuracy on visual recognition tasks like image classification and face recognition. However, here we will show that feedforward neural networks struggle to learn abstract visual relations that are effortlessly recognized by non-human primates, birds, rodents and even insects.

View Article and Find Full Text PDF

The detection of object boundaries is a critical first step for many visual processing tasks. Multiple cues (we consider luminance, color, motion and binocular disparity) available in the early visual system may signal object boundaries but little is known about their relative diagnosticity and how to optimally combine them for boundary detection. This study thus aims at understanding how early visual processes inform boundary detection in natural scenes.

View Article and Find Full Text PDF

A multilayered film was prepared by layer-by-layer (LBL) assembly of active ester modified multiwalled carbon nanotubes (MWCNTs) and poly(allylamine hydrochloride) (PAH). For this purpose, carboxylic groups on the surface of the oxidized MWCNTs were converted to the acyl chlorides by their reaction with thionyl chloride. Subsequent reaction of the acyl chlorides with pentafluorophenol formed the active esters.

View Article and Find Full Text PDF

Hydrophobic polymer (PS) nanoparticles preformed through an emulsifier-free emulsion polymerization method were successfully incorporated into a gallery of pristine sodium montmorillonite via interfacial cation exchange. The polymer beads confined between clay nanosheets were capable of (1) preventing the silicate layers from restacking and (2) maintaining the exfoliated state of clay. The increase in the abundance of surface groups promoted adsorption of the nanobeads onto the silicate surface and eventually led to the establishment of strong polymer-clay interactions.

View Article and Find Full Text PDF