Macaque restricts hepatitis B virus (HBV) infection because its receptor homologue, NTCP (mNTCP), cannot bind preS1 on viral surface. To reveal how mNTCP loses the viral receptor function, we here solve the cryo-electron microscopy structure of mNTCP. Superposing on the human NTCP (hNTCP)-preS1 complex structure shows that Arg158 of mNTCP causes steric clash to prevent preS1 from embedding onto the bile acid tunnel of NTCP.
View Article and Find Full Text PDFBackground: Data are limited on the protective role of the Omicron BA bivalent vaccine, previous infection, and their induced neutralizing antibodies against Omicron XBB.1.16 and EG.
View Article and Find Full Text PDFEight peaks of coronavirus disease 2019 (COVID-19) outbreak occurred in Japan, each associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern. The National Epidemiological Surveillance of Infectious Diseases (NESID) analyzed viral genome sequences from symptomatic patients and submitted the results to GISAID. Meanwhile, commercial testing services occasionally sequence samples from asymptomatic individuals.
View Article and Find Full Text PDFThe LAMPdirect Genelyzer KIT allows for the detection of SARS-CoV-2 RNA in saliva samples with a loop-mediated isothermal amplification (LAMP) method and generates results within 20 min. It has been approved by the Pharmaceuticals and Medical Devices Agency in Japan. In this study, the performance of the LAMPdirect Genelyzer KIT was compared with that of the RT-qPCR reference method using 50 nasopharyngeal swabs and 100 saliva samples.
View Article and Find Full Text PDFDelays in clearance and rapid evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported in immunocompromised patients. We encountered a case of recurrent, multi-mutational SARS-CoV-2 infection in a 40-year-old man with severe immunodeficiency due to Good syndrome. The patient had not received the SARS-CoV-2 vaccination.
View Article and Find Full Text PDFSince the early phase of the coronavirus disease 2019 (COVID-19) pandemic, a number of research institutes have been sequencing and sharing high-quality severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes to trace the route of infection in Japan. To provide insight into the spread of COVID-19, we developed a web platform named SARS-CoV-2 HaploGraph to visualize the emergence timing and geographical transmission of SARS-CoV-2 haplotypes. Using data from the GISAID EpiCoV database as of June 4, 2022, we created a haplotype naming system by determining the ancestral haplotype for each epidemic wave and showed prefecture- or region-specific haplotypes in each of four waves in Japan.
View Article and Find Full Text PDFBackground: Data are limited on the role of preinfection humoral immunity protection against Omicron BA.5 infection and long coronavirus disease (COVID) development.
Methods: We conducted nested case-control analysis among tertiary hospital staff in Tokyo who donated blood samples in June 2022 (1 month before Omicron BA.
Background: Longitudinal data are lacking to compare booster effects of Delta breakthrough infection versus third vaccine dose on neutralizing antibodies (NAb) against Omicron.
Methods: Participants were the staff of a national research and medical institution in Tokyo who attended serological surveys on June 2021 (baseline) and December 2021 (follow-up); in between, the Delta-dominant epidemic occurred. Of 844 participants who were infection-naïve and had received two doses of BNT162b2 at baseline, we identified 11 breakthrough infections during follow-up.
Although vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease 2019 (COVID-19) induce effective immune responses, vaccination with booster doses is necessary because of waning immunity. We conducted an open-label, non-randomized, single-arm study in adults in Japan to assess the immunogenicity and safety of a single booster dose of the KD-414 purified whole-SARS-CoV-2-virion inactivated vaccine candidate after vaccination with a primary series of BNT162b2. The primary endpoint was serum neutralizing activity at 7 days after booster injection compared with the primary series of BNT162b2.
View Article and Find Full Text PDFAlthough biomarkers to predict coronavirus disease 2019 (COVID-19) severity have been studied since the early pandemic, no clear guidelines on using them in clinical practice are available. Here, we examined the ability of four biomarkers to predict disease severity using conserved sera from COVID-19 patients who received inpatient care between January 1, 2020 and September 21, 2021 at the National Center for Global Health and Medicine, collected at the appropriate time for prediction. We predicted illness severity in two situations: 1) prediction of future oxygen administration for patients without oxygen support within 8 days of onset (Study 1) and 2) prediction of future mechanical ventilation support (excluding non-invasive positive pressure ventilation) or death of patients within 4 days of the start of oxygen administration (Study 2).
View Article and Find Full Text PDFObjectives: To investigate the role of immunogenicity after the third vaccine dose against Omicron infection and COVID-19-compatible symptoms of infection.
Methods: First, we examined vaccine effectiveness (VE) of the third dose against the second dose during the Omicron wave among the staff at a tertiary hospital in Tokyo. In a case-control study of third vaccine recipients, we compared the preinfection live-virus neutralizing antibodies (NAb) against Omicron between breakthrough cases and their controls who had close contact with patients with COVID-19.
The humoral and cellular immune responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) upon the coronavirus disease 2019 (COVID-19) vaccination remain to be clarified. Hence, we aimed to investigate the long-term chronological changes in SARS-CoV-2 specific IgG antibody, neutralizing antibody, and T cell responses during and after receiving the BNT162b2 vaccine. We performed serological, neutralization, and T cell assays among 100 hospital workers aged 22-73 years who received the vaccine.
View Article and Find Full Text PDFVaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have shown high efficacy in preventing the onset of disease. However, the immune response to infection immediately after the first vaccination remains unknown. We examined the anti-SARS-CoV-2-binding-antibody titers and neutralizing activity in patients who developed coronavirus disease 2019 after the first vaccination.
View Article and Find Full Text PDFBackground: The coronavirus disease 2019 (COVID-19) pandemic is currently ongoing, and there have been significant efforts in the development of COVID-19 vaccines. However, the neutralizing antibody titers in vaccinated individuals are reported to progressively decrease over time. Japanese pharmaceutical companies have published the results of Phase I and II studies on the safety and efficacy of different vaccines.
View Article and Find Full Text PDFThe Omicron variant of severe acute respiratory syndrome coronavirus 2 has multiple amino acid mutations in its spike proteins, which may allow it to evade immunity elicited by vaccination. We examined the neutralising activity and S1-IgG titres in patients with breakthrough infections caused by the Omicron variant after two doses of vaccination. We found that neutralising activity was significantly lower for the Omicron variant than for the Wuhan strain.
View Article and Find Full Text PDFBNT162b2, an mRNA-based SARS-CoV-2 vaccine (Pfizer-BioNTech, New York, NY, USA), is one of the most effective COVID-19 vaccines and has been approved by more than 130 countries worldwide. However, several studies have reported that the COVID-19 vaccine shows high interpersonal variability in terms of humoral and cellular responses, such as those with respect to SARS-CoV-2 spike protein immunoglobulin (Ig)G, IgA, IgM, neutralizing antibodies, and CD4 and CD8 T cells. The objective of this study is to investigate the kinetic changes in anti-SARS-CoV-2 spike IgG (IgG-S) profiles and adverse reactions and their associations with HLA profiles (, , , , , , and ) among 100 hospital workers from the Center Hospital of the National Center for Global Health and Medicine (NCGM), Tokyo, Japan.
View Article and Find Full Text PDFManagement of COVID-19 patients with humoral immunodeficiency is challenging. We describe a woman with COVID-19 with multiple relapses due to anti-CD20 monoclonal antibody treatment. She was successfully treated with casirivimab/imdevimab and confirmed to have neutralizing antibodies.
View Article and Find Full Text PDFHigh vaccine reactogenicities may reflect stronger immune responses, but the epidemiological evidence for coronavirus disease 2019 (COVID-19) vaccines is sparse and inconsistent. We observed that a fever of ≥38℃ after two doses of the BNT162b2 vaccine was associated with higher severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike IgG titers.
View Article and Find Full Text PDFBackground: While increasing coverage of effective vaccines against coronavirus disease 2019 (COVID-19), emergent variants raise concerns about breakthrough infection. Data are limited, however, whether breakthrough infection during the epidemic of the variant is ascribed to insufficient vaccine-induced immunogenicity.
Methods: We describe incident COVID-19 in relation to the vaccination program among workers of a referral hospital in Tokyo.
Hepatitis B virus (HBV) is a stealth virus that exhibits only minimal induction of the interferon system, which is required for both innate and adaptive immune responses. However, 90% of acutely infected adults can clear the virus, suggesting the presence of additional mechanisms that facilitate viral clearance. Here, we report that Maf bZIP transcription factor F (MafF) promotes host defense against infection with HBV.
View Article and Find Full Text PDFBackground And Aims: Chronic HBV infection is a major health problem worldwide. Currently, the first-line treatment for HBV is nucleos(t)ide analogs or interferons; however, efficient therapeutic approaches that enable cure are lacking. Therefore, anti-HBV agents with mechanisms distinct from those of current drugs are needed.
View Article and Find Full Text PDFPrompt identification of causative pathogenic bacteria is imperative for the treatment of patients suffering from infectious diseases, including sepsis and pneumonia. However, current culture-based methodologies have several drawbacks including their limitation of use to culturable bacterial species. To circumvent these problems, we attempted to detect bacterial DNA in blood using next-generation DNA sequencing (NGS) technology.
View Article and Find Full Text PDFHuman immunodeficiency virus type 1 (HIV-1), the causative agent of AIDS, originated from simian immunodeficiency virus from chimpanzees (SIVcpz), the precursor of the human virus, approximately 100 years ago. This indicates that HIV-1 has emerged through the cross-species transmission of SIVcpz from chimpanzees to humans. However, it remains unclear how SIVcpz has evolved into pandemic HIV-1 in humans.
View Article and Find Full Text PDFWe developed a portable system for 16S rDNA analyses consisting of a nanopore technology-based sequencer, the MinION, and laptop computers, and assessed its potential ability to determine bacterial compositions rapidly. We tested our protocols using a mock bacterial community that contained equimolar 16S rDNA and a pleural effusion from a patient with empyema, for time effectiveness and accuracy. MinION sequencing targeting 16S rDNA detected all 20 of the bacterial species present in the mock bacterial community.
View Article and Find Full Text PDF