Publications by authors named "Junke Zhu"

This paper focuses on addressing the limitations of existing mechanical weeding methods for corn plants by introducing a spiral tendon-type precision weeding device specifically designed for corn fields. The study encompasses mechanical design and theoretical analysis to determine the overall structure, component parts, application scenarios, operation modes, and working principles of the device. The force applied to the spiral tendon weeding cutter head, a crucial working component of the device, is analyzed, along with its motion characteristics.

View Article and Find Full Text PDF

Accurate weed detection is essential for the precise control of weeds in wheat fields, but weeds and wheat are sheltered from each other, and there is no clear size specification, making it difficult to accurately detect weeds in wheat. To achieve the precise identification of weeds, wheat weed datasets were constructed, and a wheat field weed detection model, YOLOv8-MBM, based on improved YOLOv8s, was proposed. In this study, a lightweight visual converter (MobileViTv3) was introduced into the C2f module to enhance the detection accuracy of the model by integrating input, local (CNN), and global (ViT) features.

View Article and Find Full Text PDF

Protein lactylation is a newly discovered posttranslational modification (PTM) and is involved in multiple biological processes, both in mammalian cells and rice grains. However, the function of lysine lactylation remains unexplored in wheat. In this study, we performed the first comparative proteomes and lysine lactylomes during seed germination of wheat.

View Article and Find Full Text PDF

The flowering period is one of the important indexes of wheat breeding. The early or late flowering affects the final yield and character stability of wheat. In order to solve the problem that it is difficult to accurately and quickly detect the flowering period of a large number of wheat breeding materials, a determination method of flowering period for field wheat based on the improved You Only Look Once (YOLO) v5s model was proposed.

View Article and Find Full Text PDF

Background: Tetraspanins are members of the 4-transmembrane protein superfamily (TM4SF) that function by recruiting many cell surface receptors and signaling proteins into tetraspanin-enriched microdomains (TEMs) that play vital roles in the regulation of key cellular processes including adhesion, motility, and proliferation. Tetraspanin7 (Tspan7) is a member of this superfamily that plays documented roles in hippocampal neurogenesis, synaptic transmission, and malignant transformation in certain tumor types. How Tspan7 influences the onset or progression of osteosarcoma (OS), however, remains to be defined.

View Article and Find Full Text PDF

Purpose: Severe acetabular bone defect is challenging in revision hip arthroplasty. In the present study, we aimed to present new treatment options with the 3D printing technique and analyze the clinical and radiographic outcomes of 3D-printed titanium implants for the treatment of severe acetabular bone defects in revision hip arthroplasty.

Methods: A total of 35 patients with Paprosky type 3 bone defect and pelvic discontinuity (PD), who underwent hip revisions using 3D-printed titanium implants between 2016 and 2019 at our institution, were retrospectively reviewed.

View Article and Find Full Text PDF

Object: At present, there are few effective treatment options available to patients suffering from osteosarcoma (OS). Clarifying the signaling pathways that govern OS oncogenesis may highlight novel approaches to treating this deadly form of cancer. Recent experimental evidence suggests that the transmembrane protein tetraspanin-9 (Tspan9) plays a role in tumor development.

View Article and Find Full Text PDF

The design and synthesis of hollow-nanostructured transition metal oxide-based anodes is of great importance for long-term operation of lithium ion batteries. Herein, we report a two-step calcination strategy to fabricate hollow CoO nanoparticles embedded in a N,S-co-doped reduced graphene oxide framework. In the first step, core-shell-like Co@CoO embedded in N,S-co-doped reduced graphene oxide is synthesized by pyrolysis of a Co-based metal organic framework/graphene oxide precursor in an inert atmosphere at 800 °C.

View Article and Find Full Text PDF

Developing efficient and durable bifunctional transition metal phosphide (TMP) electrocatalysts is still a great challenge because of its relatively sluggish kinetics of oxygen evolution reaction (OER). Herein, we report a unique bimetallic diphosphide pair (FeP-NiP) forming spherical nanocages encapsulated in P-doped carbon layers (FeP-NiP@PC) as advanced bifunctional electrocatalyst synthesized by a very facile phosphorization approach. The obtained FeP-NiP@PC electrocatalyst exhibits an outstanding OER activity with an ultralow overpotential of 248 mV in 1 M KOH and a low overpotential of 117 mV for HER in 0.

View Article and Find Full Text PDF

Polyhedral oligomeric silsesquioxane (POSS)-derived Si@C anode material is prepared by the copolymerization of octavinyl-polyhedral oligomeric silsesquioxane (octavinyl-POSS) and styrene. Octavinyl-polyhedral oligomeric silsesquioxane has an inorganic core (-Si₈O) and an organic vinyl shell. Carbonization of the core-shell structured organic-inorganic hybrid precursor results in the formation of carbon protected Si-based anode material applicable for lithium ion battery.

View Article and Find Full Text PDF

Purpose: To explore the efficacy of neoadjuvant chemotherapy combined with limb salvage surgery for the treatment of osteosarcoma complicated by pathological fracture.

Methods: 215 osteosarcoma patients who were admitted in our hospital from 2001 and 2012 were followed up for 5 years and were retrospectively analyzed among them. The patients were divided into 4 groups based on their condition and treatment method to observe the 5-year overall survival and tumor-free survival (TFS) in each group.

View Article and Find Full Text PDF

Chronic hepatitis B infection remains a serious public health issue worldwide. Hepatitis B virus (HBV) reactivation is commonly reported in patients receiving anticancer therapy, immunosuppressive therapy, or organ and tissue transplantation. However, the precise mechanisms underlying chemotherapeutic agent-related HBV reactivation remain unclear.

View Article and Find Full Text PDF

The aim of our study was to increase the detection rate of fetal cardiac malformations for congenital heart disease (CHD). The ultrasonic and microanatomical methods were combined to study the CHD cases firstly, which could provide the microsurgical anatomical basis to the prenatal ultrasonic diagnosis which was used in suspected CHD and help the sonographer to improve the quality of fetal cardiac diagnosis. We established the ultrasonic standard section of the 175 complex CHD cases and collected the fetal echocardiography image files.

View Article and Find Full Text PDF

Studies on molecular mechanisms of the persist infection of hepatitis B virus have been hampered by a lack of a robust animal model. We successfully established a simple, versatile, and reproducible HBV persist infection model in vitro and in vivo with the circularized HBV DNA. The cells and mice were transfected or injected with circularized HBV DNA and pAAV/HBV1.

View Article and Find Full Text PDF