Publications by authors named "Junkang Rong"

Background: AGAMOUS-LIKE 8 (AGL8) belongs to the MADS-box family, which plays important roles in transcriptional regulation, sequence-specific DNA binding and other biological processes and molecular functions. The genome of cotton, a representative polyploid plant, contains multiple AGL8 genes. However, their functional differentiation is still unclear.

View Article and Find Full Text PDF

Trichomes, which originate from the epidermal cell of aerial organs, provide plants with defense and secretion functions. Although numerous genes have been implicated in trichome development, the molecular mechanisms underlying trichome cell formation in plants remain incompletely understood. Here, we using genome-wide association study (GWAS) across 1037 diverse accessions in upland cotton (Gossypium hirsutum) to identify three loci associated with leaf pubescence (hair) amount, located on chromosome A06 (LPA1), A08 (LPA2) and A11 (LPA3), respectively.

View Article and Find Full Text PDF

The calmodulin-binding protein 60 () family is a gene family unique to plants, and its members play a crucial role in plant defense responses to pathogens and growth and development. Considering that cotton is the primary source of natural cotton textile fiber, the functional study of its gene family members is critical. In this research, we successfully identified 162 members from the genomes of 21 species.

View Article and Find Full Text PDF

Background: GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) genes encode a typical helix-loop-helix (bHLH) transcription factors that primarily regulate trichome branching and root hair development, DNA endoreduplication, trichoblast size, and stomatal formation. The functions of GL3 genes in cotton crop have been poorly characterized. In this study, we performed comprehensive genome-wide scans for GL3 and EGL3 homologs to enhance our comprehension of their potential roles in trichome and fiber development in cotton crop.

View Article and Find Full Text PDF

Glume pubescence is an important morphological trait for the characterization of wheat cultivars. It shows tolerance to biotic and abiotic stresses to some extent. Hg1 (formerly named Hg) locus on chromosome 1AS controls glume pubescence in wheat.

View Article and Find Full Text PDF

GaKAN2, a member of the KANADI family, was found to be widely expressed in the cotton tissues and regulates trichome development through complex pathways. Cotton trichomes are believed to be the defense barrier against insect pests. Cotton fiber and trichomes are single-cell epidermal extensions with shared regulatory mechanisms.

View Article and Find Full Text PDF

Cotton is a valuable cash crop in many countries. Cotton fiber is a trichome that develops from a single epidermal cell and serves as an excellent model for understanding cell differentiation and other life processes. Alternative splicing (AS) of genes is a common post-transcriptional regulatory process in plants that is essential for plant growth and development.

View Article and Find Full Text PDF

Over the last two decades, the use of high-density SNP arrays and DNA sequencing have allowed scientists to uncover the majority of the genotypic space for various crops, including cotton. Genome-wide association study (GWAS) links the dots between a phenotype and its underlying genetics across the genomes of populations. It was first developed and applied in the field of human disease genetics.

View Article and Find Full Text PDF

Hybrid breeding has provided an impetus to the process and achievement of a higher yield and quality of crops. Interspecific hybridization is critical for resolving parental genetic diversity bottleneck problems. The reciprocal interspecific hybrids and their parents ( and ) have been applied in this study to elucidate the transcription regulatory mechanism of early biomass heterosis.

View Article and Find Full Text PDF

In the present study, four large-scale field trials using two doubled haploid wheat populations were conducted in different environments for two years. Grain protein content (GPC) and 21 other yield-related traits were investigated. A total of 227 QTL were mapped on 18 chromosomes, which formed 35 QTL clusters.

View Article and Find Full Text PDF

Root systems are instrumental for water and nutrient uptake and the anchorage of plants in the soil. Root regulating GL2-interacting repressors (GIRs) contain a Short RING-like Zinc-Finger (SRNF) domain, but there has been no comprehensive characterization about this gene family in any plant species. Here, we renamed the GIR-like proteins as SRNF proteins due to their conserved domain and identified 140 genes from 16 plant species including 24 genes in .

View Article and Find Full Text PDF

Dynamic remodeling of the actin cytoskeleton plays a central role in the elongation of cotton fibers, which are the most important natural fibers in the global textile industry. Here, a high-resolution mapping approach combined with comparative sequencing and a transgenic method revealed that a G65V substitution in the cotton actin Gh_D04G0865 (GhACT17D in the wild-type) is responsible for the Ligon lintless-1 () mutant (GhACT17DM). In the mutant GhACT17DM from plant, Gly65 is substituted with valine on the lip of the nucleotide-binding domain of GhACT17D, which probably affects the polymerization of F-actin.

View Article and Find Full Text PDF

Background: Cotton stem trichomes and seed fibers are each single celled structures formed by protrusions of epidermal cells, and were found sharing the overlapping molecular mechanism. Compared with fibers, cotton stem trichomes are more easily observed, but the molecular mechanisms underlying their development are still poorly understood.

Results: In this study, Gossypium hirsutum (Gh) and G.

View Article and Find Full Text PDF

Cotton fibers are initiated from the epidermal cells of the ovule before or on the day of anthesis. Gossypium arboreum SMA-4 mutant contains recessive mutation (sma-4(ha)) and has the phenotypes of fibreless seeds and glabrous stems. In this study, fine mapping and alternative splicing analysis indicated a nucleotide substitution (AG → AC) at splicing site in a homeodomain-leucine zipper IV family gene (GaHD1) might cause gene A3S (Alternative 3' splicing) mistake, suggested that GaHD1 was the candidate gene of sma-4(ha).

View Article and Find Full Text PDF

Extreme elongation distinguishes about one-fourth of cotton ( sp.) seed epidermal cells as "lint" fibers, useful for the textile industry, from "fuzz" fibers (<5 mm). ( ), a dominant mutation that results in no lint fiber but normal fuzz fiber, offers insight into pathways and mechanisms that differentiate spinnable cotton from its progenitors.

View Article and Find Full Text PDF

Stem trichomes and seed fibers originate from epidermal cells and partially share a regulatory pathway at the molecular level. In Gossypium barbadense, two insertions of a Ty1 long-terminal repeat-retrotransposon [transposable element TE1 and TE2] in a homeodomain-leucine zipper gene (HD1) result in glabrous stems. The primers used to identify the TE insertions in G.

View Article and Find Full Text PDF

The regulator of chromosome condensation 1 (RCC1) is the nucleotide exchange factor for a GTPase called the Ras-related nuclear protein, and it is important for nucleo-plasmic transport, mitosis, nuclear membrane assembly, and control of chromatin agglutination during the S phase of mitosis in animals. In plants, RCC1 molecules act mainly as regulating factors for a series of downstream genes during biological processes such as the ultraviolet-B radiation (UV-B) response and cold tolerance. In this study, 56 genes were identified in upland cotton by searching the associated reference genomes.

View Article and Find Full Text PDF

Nonrandom segregation ratios of alleles 'segregation distortion' can have a striking impact on transmission genetics, and with widespread availability of genetic markers has been shown to be a frequent phenomenon. To investigate the possible effect of genetic interaction on segregation distortion and genetic map construction, the segregation and mapping of genetic markers locatedon wheat chromosomes 1A and 1B were followed in four recombinant substitution line (RSL) populations, produced using four chromosome-arm substitution lines (CASLs 1AS, 1AL, 1BS and 1BL) of wild emmer ( var. , accession TTD140) in the background of the common wheat () cultivar Bethlehem (BLH), each crossed to BLH itself.

View Article and Find Full Text PDF

Background: Polyploidy is considered a major driving force in genome expansion, yielding duplicated genes whose expression may be conserved or divergence as a consequence of polyploidization.

Results: We compared the genome sequences of tetraploid cotton (Gossypium hirsutum) and its two diploid progenitors, G. arboreum and G.

View Article and Find Full Text PDF

Among the seven tetraploid cotton species, little is known about transmission genetics and genome organization in Gossypium mustelinum, the species most distant from the source of most cultivated cotton, G. hirsutum In this research, an F2 population was developed from an interspecific cross between G. hirsutum and G.

View Article and Find Full Text PDF

Premise Of The Study: Introgression is widely acknowledged as a potential source of valuable genetic variation, and growing effort is being invested in analysis of interspecific crosses conferring transgressive variation. Experimental backcross populations provide an opportunity to study transmission genetics following interspecific hybridization, identifying opportunities and constraints to introgressive crop improvement. The evolutionary consequences of introgression have been addressed at the theoretical level, however, issues related to levels and patterns of introgression among (plant) species remain inadequately explored, including such factors as polyploidization, subgenome interaction inhabiting a common nucleus, and the genomic distribution and linkage relationships of introgressant alleles.

View Article and Find Full Text PDF

Wheat heading date is an important agronomic trait determining maturation time and yield. A set of common wheat (Triticum aestivum var. Chinese Spring; CS)-wild emmer (T.

View Article and Find Full Text PDF

Cotton (Gossypium) stem trichomes are mostly single cells that arise from stem epidermal cells. In this study, a homeodomain-leucine zipper gene (HD1) was found to cosegregate with the dominant trichome locus previously designated as T1 and mapped to chromosome 6. Characterization of HD1 orthologs revealed that the absence of stem trichomes in modern Gossypium barbadense varieties is linked to a large retrotransposon insertion in the ninth exon, 2565 bp downstream from the initial codon in the At subgenome HD1 gene (At-GbHD1).

View Article and Find Full Text PDF

Ligon lintless-1 (Li1) is a Gossypium hirsutum mutant that is controlled by a dominant gene that arrests the development of cotton fiber after anthesis. Two F2 mapping populations were developed from mutant (Li1 × H7124) F1 plants in 2012 and 2013; each was composed of 142 and 1024 plants, respectively. Using these populations, Li1 was mapped to a 0.

View Article and Find Full Text PDF

A transcriptionally active Ty1/copia -like retrotransposon was identified in the genome of Gossypium barbadense. The different heat activation of this element was observed in two tetraploid cotton species. Most retrotransposons from plants are transcriptionally silent, or activated under certain conditions.

View Article and Find Full Text PDF